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Helium is the only substance that has been observed on macroscopic scale to form
the fourth state of matter, the superfluid state. However, until recently superfluid
helium had not found any practical applications, mainly because it expels all
other atoms or molecules. Only in the 1990s was it discovered that it is possible
to mix in other substances with superfluid helium if helium is prepared as
small droplets, called nanodroplets, containing only a few thousand atoms.
This discovery led to the development of a new and very powerful experimental
technique, called helium-nanodroplet spectroscopy. Superfluid helium creates
a gentle matrix around the impurities and – due to superfluidity and to
very weak interactions of helium atoms with other atoms or molecules – allows
measurements of the spectra with precision not much lower than in the gas
phase. Consequently, helium-nanodroplet spectroscopy enables very accurate
probing of molecules or clusters which cannot be investigated in the gas
phase due to their instability. This category includes ‘fragile’ molecules, isomers,
radicals, and clusters in secondary minima. The major experimental developments
will be described, emphasizing their importance for understanding basic principles
of physics and new insights into chemically relevant processes.
The experiments have been assisted by theoretical work on impurity–Hen

clusters. Most such work involves first-principles quantum simulations.
Although the number of helium atoms that can be included in such simulations
is significantly smaller than in a typical nanodroplet, theory explains most of
the observed trends reasonably well. Theoretical results can also be compared
directly and much more precisely than in the case of the droplets with the results
of molecular beam experiments on clusters of controllable size, with the number
of helium atoms ranging from 1 to almost 100. Most of the simulations
published to date will be discussed and the level of agreement with experiment
will be critically evaluated. The results of the simulations are very sensitive to
details of the He–He and impurity–He interaction potentials used, and most of
the current discrepancies between theory and experiment can be traced down to
the uncertainties of the potentials. Thus, an important component of this
review will be an analysis of various sources of errors in potential energy surfaces.
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1. Introduction

Superfluidity is the tendency of liquid helium to flow freely, even upward, with little
apparent friction. This phenomenon can be observed if the temperature of helium is
lower than 2.19K (the so-called �-point temperature). Superfluidity was discovered by
Kapitza [1], and Allen and Misener [2] in 1937. It takes place only for the 4He isotope
of helium, which is a boson (at much lower temperatures, also the fermionic 3He isotope
becomes superfluid after bosonic pairs of such atoms are formed). In the independent-
particle approximation, i.e. when the wavefunction for a set of identical particles (here
atoms) can be written as a symmetrized or antisymmetrized product of single-particle
wavefunctions, any number of bosons can occupy a given single-particle energy
level (in contrast, only one fermion may occupy a given level). In consequence,
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at very low temperatures, bosonic atoms occupy only the lowest energy levels. If one of
these levels is macroscopically occupied, i.e. the majority of atoms are in the same single-
particle state, these atoms carry no entropy. Furthermore, one can easily show that the
flow of these particles is irrotational (see, for example, Ref. [3]). In 1941, Landau [4]
intuitively postulated these two conditions and concluded from them that the excitation
energy � of the superfluid phase is a function of the momentum p transferred in the exci-
tation. This is similar to collective excitations of solids, i.e. to phonons. In fact, Landau
assumed that for superfluid helium the dependence �(p) is linear for small p, i.e. the same
as for phonons, but for larger p it goes through a maximum (called a maxon) and then a
minimum (called a roton). These phenomenological assumptions were backed up in 1956
by theoretical arguments in the work of Feynman and Cohen [5]. With the assumed
shape of �(p), elementary arguments of momentum and energy conservation show [6]
that a body moving through superfluid helium will encounter no drag forces below
some critical velocity due to the fact that small-energy excitations are not possible.
The same reasons lead to flow without friction. The phenomenon of superfluidity is
one of the very few macroscopic manifestations of the quantum character of matter
and it has fascinated physicists since its discovery. Several Nobel Prizes were awarded
for investigations of superfluidity [Landau (1962); Kapitza (1978); Lee–Osherhoff–
Richardson (1996); Abrikosov–Ginzburg–Leggett (2003)]. Helium is the only superfluid
substance observed so far in macroscopic amounts, although there are indications [7]
that small ensembles of molecular hydrogen may also exhibit superfluidity and it is gen-
erally accepted that parts of neutron stars are superfluid [8].

Einstein predicted in 1924 [9,10] (extending the earlier work of Bose for photons [11])

that, at a sufficiently low temperature, non-interacting bosonic atoms should undergo

a phase transition, now called the Bose–Einstein condensation (BEC). In the BEC state,

a macroscopic fraction of bosons occupies the single-particle ground energy level.

London suggested in 1938 [12] that superfluidity is connected to BEC. However,

Landau always opposed this idea and considered BEC to be a pathology of

a non-interacting gas of bosons. The theory of superfluidity, for which Landau received

the Nobel Prize, does not involve BEC. On the other hand, known theoretical

justifications of the two assumptions made by Landau require a macroscopic occupation

of a single-particle state, like in BEC. The current opinion of many researchers investigat-

ing superfluid helium is well described by Leggett in a recent review [3]: ‘However, there

is one feature of this whole scenario that might leave one with a feeling of slight disquiet:

in the sixty years since London’s original proposal, while there has been almost universal

belief that the key to superfluidity is indeed the onset of BEC at the �-temperature, it has

proved very difficult, if not impossible, to verify the existence of the latter phenomenon

directly. The main evidence for it comes from high-energy neutron scattering and, very

recently, from the spectrum of atoms evaporated from the surface of the liquid,

and while both are certainly consistent with the existence of a condensate fraction

of approximately 10%, neither can be said to establish it beyond all possible doubt’.

For more discussion of these issues, see Ref. [13]. An undisputable Bose–Einstein

condensate was achieved experimentally by Cornell, Wieman, Ketterle, Hulet, and their

collaborators in 1995 [14–16] in microscopic samples of alkali atoms cooled to nanokelvin

temperatures. Such samples also show some features characteristic of superfluidity [17].
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One reason that the fundamental question about the relation between superfluidity and

BEC could not be settled is that whereas macroscopic superfluid phenomena have been
extensively studied experimentally, not much information is available at the microscopic

level. This sparse knowledge is due to lack of appropriate probes: liquid helium

naturally cleanses itself of impurities. Only in 1992 have Goyal et al. [18] shown
that one can combine other substances with superfluid helium if helium is formed as

small droplets, called nanodroplets, containing only a few thousand atoms. Actually,

at that time, it was not clear whether such droplets are superfluid. This was shown
by Hartmann et al. [19] in 1995 by precise measurements of spectra of molecular impurities

in nanodroplets. These discoveries have greatly improved our understanding of the
mechanisms of superfluidity, as helium-nanodroplet spectroscopy provided the first

unique and precise probe of the superfluid helium medium on the atomic scale.
The ability of helium to form droplets has been known for almost a century.

Such droplets were first observed by Kamerlingh-Onnes [20] in 1908 in the form of
a ‘helium fog’. A reemergence of investigations of helium droplets took place in the

1960s through 1980s in cluster beams (see Ref. [21] for a review). However, lack of

suitable experimental probes led to diminishing interest in the subject. In 1990,
Scheidemann et al. [22] showed by using mass spectroscopy that helium droplets can

pick neon atoms. Goyal et al. [18] were able to attach or embed molecules in a droplet
by passing a collimated beam of helium droplets (formed by free-jet expansion of pres-

surized helium gas from a low-temperature nozzle) via a pick-up chamber containing

a molecular vapour. The doped droplets were then probed spectroscopically.
When the impurity, such as an SF6 molecule, absorbs a photon, a part of the droplet

is evaporated when the excitation energy is relaxed to helium, which provides

the signal. The signal was initially measured using bolometric techniques; later also
mass-spectroscopy methods have been applied.

Helium droplets normally contain several thousand atoms or even millions of atoms,

i.e. have a diameter of a few nanometres and therefore are often called nanodroplets.
The smallest droplets that can be formed contain a few hundred atoms. This size is still

much larger than sizes that are possible in quantum mechanical computer modelling of

superfluid phenomena where one can include at the most a hundred or so helium
atoms. Nevertheless, results of theoretical calculations have been found to compare well

with experimental findings despite the size difference and therefore can be used to interpret

measurements. Quantum mechanical calculations can determine the superfluid fraction of
the liquid and whether some of the helium atoms form a condensate. These calculations

can also predict the results of high-precision spectroscopic measurements of impurities
contained in nanodroplets. Thus, comparisons of such measurements with the results

of numerical simulations lead to a better microscopic understanding of superfluidity

and its relation to BEC. This becomes the key strategy for investigations of the phenomena
of superfluidity, probing it down to the scale of individual atoms. Theoretical calculations

can also be compared with experiments on impurity–Hen clusters formed in

molecular beams. The helium nanodroplet developments inspired a large number of
beam experiments, with the controlled number of the helium atoms reaching about

80 [23–25], only an order of magnitude less than in the smallest nanodroplets.

These experiments are very important since comparisons can be made with theoretical
calculations on clusters of exactly the same size.
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As already mentioned, the first proof that helium nanodroplets are actually superfluid

was provided by Hartmann et al. [19] in 1995. These authors observed sharp, rotationally
resolved spectra of an impurity in nanodroplets, whereas normal solvents significantly

broaden spectral lines of impurities due to intermolecular interactions. Even taking into

account that for the helium solvent such interactions are much smaller than for any
other solvent, one expected broader lines than observed. The final proof was achieved

in 1998 when the same group found only very broad spectral peaks in helium nanodroplets

formed by the fermionic 3He isotope [26]. They then added a small number of 4He atoms
to such droplets and showed that it requires only about 60 atoms to achieve the onset of

superfluidity. This agrees with earlier theoretical predictions by Sindzingre et al. [27].
These experiments also determined the temperature of the droplets to be 0.38K for
4He and 0.15K for 3He. A similar method was used later by Grebenev et al. [7]

to create a thin layer of parahydrogen molecules around a chromophore in a helium
nanodroplet. Changes of the spectral patterns at a temperature of about 0.15K indicate

that this layer becomes superfluid at such temperature. This was the first observation

of any substance other than helium to become superfluid (although, as mentioned
above, microscopic ensembles of alkali atoms show some features of superfluidity).

Despite the fact that superfluidity in helium nanodroplets is identified by somewhat

different characteristic features than in bulk liquid helium, it is rather clear that the
same phenomenon is observed in both cases. In theoretical work on pure helium, the

superfluidity can be determined by placing a helium cluster in a slowly rotating external

field [27] to find the fractions of the classical and quantum response of the system,
the latter being identified with superfluidity. The approach is analogous to the macro-

scopic Andronikashvili ‘rotating bucket’ experiment [28]. More recent theoretical papers

use the concept of superfluidity even for impurity–Hen clusters containing only a few
helium atoms. For example, Paesani et al. [29] find the onset of superfluidity already in

CO2–He5. The fraction of atoms that are superfluid is defined by these authors as the
ratio of the difference between the classical and quantum moments of inertia of the

system to the former moment.
Equally important to probing the mechanisms of superfluidity, is the ability of the

new technique to study molecules in novel ways. Clearly, the measurements of spectra
of molecules embedded in superfluid helium nanodroplets not only give information

about the properties of helium, but also about the impurity molecules. For molecules

which can also be measured in the gas phase, the latter information does not provide
new insights. However, there are many molecules which are too unstable to be studied

in the gas phase. The techniques of embedding these types of molecules in various solvents
to measure the spectra have been popular for a long time and are known under the name

of matrix-isolation spectroscopy. The major drawback of these techniques is that even

rare-gas matrices broaden the spectral lines rather significantly due to the van der
Waals interactions between the matrix and the chromophore and, in the case of solid

matrices, due to chromophores occupying different types of sites. The use of helium

would minimize such interactions; however, macroscopic helium matrices cannot
be used since helium expels impurities which then aggregate on the walls of the container.

The use of helium nanodroplets has resolved this difficulty. In a recent experiment, Lehnig

et al. measured a spectral line of NH3 only 0.0005 cm�1 wide [30]. The helium-nanodroplet
‘isolation’ spectroscopy technique allows accurate measurements of spectra of many
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molecules or clusters that cannot be obtained by any other methods. This includes ‘fragile’

molecules, molecular isomers, radicals, and clusters in secondary minima. Since the spectra

are much sharper than those that can be obtained in any standard matrix-isolation mea-
surements, a much better characterization of these molecules can be achieved. Therefore,

for investigations of such molecules, helium-nanodroplet spectroscopy becomes the

method of choice.
Helium-nanodroplet spectroscopy offers advantages also when applied to non-fragile

molecules. The ability to cool molecules down to subkelvin temperatures greatly increases

the range of properties that can be investigated. Thus, the method can also be viewed

as providing a small refrigerator (a helium nanodroplet) for an individual

molecule. The low-temperature environment is important, for example, in investigations
of biomolecules. Although spectra of biomolecules can be measured using traditional tech-

niques, such spectra are usually not possible to resolve, even for small biomolecules,

due to the presence of many isomers with small isomerization barriers. In nanodroplets,
the isomers become frozen and can be distinguished by applying an electric field.

Thus, one can measure high-accuracy spectra that can be interpreted. This approach

also allows studies of the isomerization phenomenon.
The range of spectroscopic techniques used to investigate molecules embedded in

helium nanodroplets steadily increases, which in turn increases the range of phenomena

that can be investigated. Whereas the methods of infrared (rovibrational) and microwave

(rotational) spectroscopy have been used most often, electronic spectroscopy has also

been routinely applied. Recently, photoelectron spectra of molecules embedded in
helium nanodroplets have been measured [31]. Many of the newer experiments are

of pump-probe type, which is particularly important for investigations of the dynamics

of chemical reactions. Since chemical processes become very slow at nanodroplet tem-

peratures, different stages of a reaction can be observed. Helium nanodroplet spectro-
scopy also allows characterization of prereactive complexes, which have been shown

to be of critical importance for predicting the outcome the chemical reactions. The nano-

droplets can even be used to synthesize compounds that cannot be made in other envir-
onments. While this cannot be a practical method for producing new materials, it allows

their characterization which may lead to alternative ways of synthesis if such materials

turn out to be of significant interest. Another possible application of helium nanodro-

plets could be for assembly, transport, and surface deposition of atomic or molecular
clusters [32].

The developments of helium-nanodroplet spectroscopy have been reviewed by several

authors [33–41]. These reviews concentrated mostly on the experimental aspects of the

phenomena, except for Refs. [40] and [41]. The present paper will emphasize theoretical
developments, but from the point of view of the interplay between theory and experiment.

As we will see, this interplay resulted in significant progress in the field. The microscopic

picture based on ab initio predictions critically depends on the use of realistic intermolecu-

lar interaction potentials. There is a clear connection between the strengths and topologies
of intermolecular potential energy surfaces and the properties of molecules embedded in

helium nanodroplets and in helium clusters. Ultimately, these are the potential surfaces

that determine the results of experiments. A better understanding of these relations will
not only increase our ability to interpret experiments, but will enable creation of clusters

with tailor-made properties.
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2. Experimental spectra of impurities in helium nanodroplets

Since the first measurement of spectra of a molecule within a helium nanodroplet [18],
a large number of molecules, ions, radicals, and clusters have been investigated
experimentally; see, for example, Refs. [19,33–39,42–55]. This list is by no means complete
and several other experiments will be discussed later on. As already stated, there are
two main reasons for such a broad interest in this experimental technique: (i) the very
cold helium matrix allows preparation of structures which are not possible to assemble
in any other way; (ii) the spectra in the droplets resemble the corresponding gas-phase
spectra. The latter is a highly non-trivial property and it is directly related to the super-
fluidity of the nanodroplets.

The precision of gas-phase spectroscopical measurements is among the highest
of all types of measurements and this method often achieves 0.0001 cm�1 resolution.
Some species whose spectra cannot be measured in gas phase have been investigated for
a long time in low-temperature matrices, most often in argon or neon matrices.
However, the resolution then decreases to only about 1 cm�1. This is due to intermolecular
interactions between the molecule embedded in the matrix and the atoms of the matrix.
The typical spectra of molecules in solutions are even less resolved and consist of broad
peaks without any characteristic spectral patterns. The use of helium as the matrix was
always recognized as an important goal since helium interacts with molecules even
weaker than neon or argon. For example, the depths of the He–HCN, Ne–HCN,
and Ar–HCN interaction potentials are 30 cm�1 [56], 63 cm�1 [57], and 147 cm�1 [56],

respectively. Thus, a helium matrix should provide a better resolution than the neon
or argon one, although still of the order of 1 cm�1. However, due to superfluidity, the
lines of the spectra measured in helium nanodroplets are in fact much sharper and can
be resolved to 0.01 cm�1 or better (even, in exceptional cases, to 0.0005 cm�1 [30]).
There are some spectral regions, however, with a significant broadening of lines in the
case of levels that can relax with energy transfer of about 10 cm�1 which couples to
roton excitations in helium. One should also mention here that one additional advantage
of helium-nanodroplet spectroscopy is that helium remains optically transparent up
to about 160,000 cm�1. In the case of spectra taken in solutions, lines of the solvent
often obscure the lines of the solute.

Whereas the first spectrum of a molecule in helium nanodroplets had a relatively low
resolution [18], a few years later Hartmann et al. [19] performed an experiment
that was precise enough to resolve the rotational lines in the vibrational spectrum
of SF6. An analysis of rotational transitions allowed the authors to determine the tempera-
ture of the droplet to be 0.37K (later this number was slightly revised and one currently

assumes that the temperature is 0.38 K). Since the spectra were resolved to better
than 0.1 cm�1, it was immediately clear that this must be due not only to the diminished
intermolecular interactions of SF6 with helium compared to neon or argon, but also
due to superfluidity of helium. That this is indeed the case was demonstrated beyond
doubt by a very elegant experiment by Grebenev et al. in 1998 [26] (see also Refs.
[42,43]). These authors formed droplets using the fermionic 3He isotope which does not
become superfluid until the temperature reaches 0.003K. Indeed, the spectra of OCS in
3He nanodroplets were completely unresolved, exhibiting about 1 cm�1 broad peaks,
whereas in 4He nanodroplets the width of the peaks was of the order of 0.01 cm�1 and
these peaks could be identified as specific rovibrational excitations of OCS. The same
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work investigated also the very important question of how many 4He atoms are needed for

a helium cluster to become superfluid. The authors were able to do so by doping the 3He

droplets containing embedded OCS molecules with 4He atoms. The latter isotope tends to
concentrate around the impurity due to slightly stronger binding resulting from lower

zero-point energy. The experimental finding was that the onset of superfluidity takes

place with about 60 4He atoms in the droplet. This very important finding confirms earlier
theoretical predictions [27] based on path integral Monte Carlo calculations. The work

of Grebenev et al. [26] also found that the temperature of the 3He nanodroplets is

0.15K. One should mention here that some earlier experimental evidence of superfluidity

of the droplets came from the work of Hartmann et al. [58] who measured the spectrum of
electronic excitations of glyoxal in 4He nanodroplets. The authors found in this

spectrum the phonon wing with features related to the maxon and roton and a

distinct gap between this wing and the zero phonon line. Such features are characteristic

of superfluidity. In 2000, Grebenev et al. [59] repeated the same experiment in 3He nano-
droplets. No gap or maxon/roton features were observed.

Nanodroplet spectroscopy has also provided some evidence that hydrogen

may become superfluid at low temperatures. Grebenev et al. [7] measured the spectra

of OCS in nanodroplets containing a number of parahydrogen molecules. Due to
the fact that H2 interacts stronger with OCS than He, one expects that OCS will be

surrounded by a layer of parahydrogen within the helium nanodroplet and helium

serves in this case only as a cryostat. When all the helium was in the form of 4He,
the spectra showed characteristic rovibrational lines identified as rotational Q branches

resulting from the motion of (H2)n–OCS complexes around the OCS axis. These

branches disappeared when 3He was added. Since this addition lowered the temperature

of the droplet from 0.38K to 0.15K, the authors interpreted the observation as
evidence that parahydrogen became superfluid due to this temperature drop and

stopped rotating around OCS. This interpretation was later supported by theoretical

studies [60].
It should be clear from this discussion that the properties of helium

nanodroplets have been well understood by now. The nanodroplets therefore

provide a well characterized, very low-temperature medium for high-accuracy spectro-

scopic investigations of atoms, molecules, radicals, clusters, and nanocrystals. This techni-

que also opens up the possibilities for growing new types of molecules, clusters, and
nanomaterials. Several such applications will be described below.

The initial applications of helium-nanodroplet spectroscopy embedded in the droplets

just single molecules such as sulfur hexafluoride, SF6 [18,19], carbonyl sulfide, OCS [26],

or glyoxal, H2C2O2 [58]. Such studies have continued since the experiments found several
interesting similarities and differences in the behaviour of various molecules. Although,

as discussed above, the rovibrational spectra of molecules in liquid nanodroplets resem-

ble the spectra in the gas phase, for most molecules the rotational constants significantly

decrease in the droplets, as seen for the first time by Hartmann et al. [19] in 1995. The
decrease is small only for molecules that rotate very fast, i.e. have very large constants in

the gas phase (see Table I in Ref. [34] and Table 3 in Ref. [37] for experimental values of

both types of constants). One exception is the LiH molecule which rotates fast
but undergoes a very significant reduction of the rotational constant [61]. The simplest

explanation of the decrease of rotational constants, i.e. increase in the moment of inertia,
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is ‘sticking’ of the helium atoms to the molecules; see Section 4 for a discussion of these

issues.
The next group of systems that have been often investigated in helium nanodroplets are

molecular clusters. The first such observation, involving the (SF6)n and Rg–SF6 clusters,

where Rg ¼ Ne, Ar, Kr, or Xe, was published in 1996 [62]. The formation of clusters in

nanodroplets is very natural since, due to the small size of the droplets and the smallness
of He–molecule interactions compared to molecule–molecule interactions, if several

molecules are picked up by a droplet, these molecules will quickly find each other to
form a cluster. Perhaps a surprising discovery in this field was that the molecules often

form very unusual clusters, such as the linear (HCN)n structures with n up to 7 [63]

or the cyclic water hexamer [46]. In the gas phase, such clusters represent local minima
on the potential energy surfaces and cannot be observed since the systems end up in

global minima. The superfluid helium matrix stabilizes local minima structures and

allows their spectral detection. The cluster growth can be controlled to some extent in
experiments, resulting in the possibilities of designing and producing new types of clusters.

The main type of control is a sequential pick-up process. A good example is Arn–HF

clusters investigated by Nauta and Miller [64]. If argon atoms are inserted into a droplet
first and a HF molecule is added next, a small quasi-sphere of argon is formed with HF

attached to the surface of the sphere. If the order is reversed, HF becomes coated with
argon atoms [64]. Another mechanism providing some control is the utilization of long-

range electrostatic forces. Dimers of linear molecules that form hydrogen bonds can be

either linear, like (HCN)2 [65], or nonlinear, like (HF)2 [66]. However, the trimers
of such molecules, even of those that form linear dimers, will always be cyclic simply

because the formation of one more intermolecular bond in the cyclic geometry energeti-

cally outweighs the increase of the energy due to the bending of dimer bonds. Linear
trimers and larger linear clusters of molecules that form linear dimers usually constitute

local minima on potential energy surfaces. In helium nanodroplets, it has been possible
to form complexes in such local minima by utilizing the long-range behaviour of intermo-

lecular potentials. A very nice example of such work is the investigation of (HCN)n clusters

by Nauta and Miller [63]. First, an HCN dimer is formed in a droplet and it is, predictably,
linear, as in the gas phase. When a third monomer is added, at large intermolecular separa-

tions it will align itself with the dimer. This is because, at such separations, the dipolar

interactions dominate the potential due to their slowest, 1/R3, decay and the minimum
of the dipole–dipole interaction potential is at the linear configuration. As the monomer

approaches the dimer, it does not get out of the local minimum since the kinetic energy

of relative motion is constantly dissipated to the helium environment. One sometimes
says that the solvent assures a ‘soft landing’ of molecules when a complex is formed.

Nauta and Miller utilized this property to form linear chains containing up to seven
HCN molecules [63]. Local minima clusters are an interesting but only a special case

of investigations of clusters in helium nanodroplets. Many other clusters were found in

configurations similar to gas phase configurations. Still, interesting information can be
obtained from measurements in the droplets, for example, about tunnelling splittings in

hydrogen-bonded complexes.
Helium nanodroplets can stabilize not only unusual clusters but also free radicals,

systems of utmost importance for understanding chemical reactions. Radical can be
produced by pyrolysis or photolysis of molecules, but their concentrations in the gas
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phase are insufficient for performing measurements. The classical matrix isolation

techniques have been widely used to stabilize radicals. As discussed earlier, a limitation
of these techniques is that the spectral resolution is of the order of 1 cm�1. Helium

nanodroplet spectroscopy allows similar studies with a resolution at least an order of mag-

nitude better. Even more important than investigations of isolated free radicals are mea-
surements of complexes of radicals with other molecules, which allow direct probings

of processes in the entrance or exit channels of chemical reactions. All these subjects

have recently been reviewed by Küpper and Merritt [67]. Helium nanodroplet spectro-
scopy even allows some studies of the dynamics of chemical processes; see for example

the investigations of photoinduced dynamics of high-spin alkali trimers [68], manipula-
tions of the BaþN2O!BaOþN2 reaction [69], or studies of the photodissociation

of CH3I [70]. Due to the very low temperature of the droplets, chemical processes are

significantly slowed down, which may perhaps allow time-resolved future studies and
chemical synthesis of novel compounds.

A special class of systems investigated by helium-nanodroplet spectroscopy are

biomolecules and clusters of biomolecules with water. The molecules investigated, such

as tryptophan, C11H12N2O2 [71,72], are very small among biomolecules, but are at the
same time very complicated systems from the point of view of the interpretation of the

rovibrational spectra. Such assignments are possible in nanodroplets due to the possibility
of controlling molecular orientations by electric fields. The rapid cooling of biomolecules

by the droplet results in freezing of tautomers present at the initial temperature

and therefore provides more information than one could anticipate. For example,
in a recent study Choi and Miller [73] observed four tautomers of guanine. Helium-

nanodroplet spectroscopy has also been applied to large molecules not related to biological

processes, like for example to oligomers of 3,4,9,10-perylene-tetracarboxylic dianhydride
(PTCDA) [74], a molecule with semiconducting properties that is of importance in

electronic and optoelectronic applications. This work produced the first resolved electronic
spectrum for such a system. One more type of very large molecules studied in this way

are polycyclic aromatic hydrocarbons, including molecules as large as biphenylene [75]

or benzo(k)fluoranthene, C20H12 [76].
One type of system often investigated by helium-nanodroplet spectroscopy is metal

atoms and clusters [36,68,77–88], mostly applying electron-excitation spectroscopy.

Due to the large energies of such excitations, a larger degree of solvent perturbation is

involved. This feature makes the investigations of the clusters more difficult, but at the
same time allows better probing of the environment, including time-resolved studies.

One important question to be answered is whether such clusters reside on the surface or
inside a droplet [36,68,77–88]. This behaviour depends on the strength of the He–metal

interaction. The depths of such interaction potentials, De, are very small and cannot be

measured. Thus, the only information about this quantity comes from ab initio
calculations; see the further discussion in Section 4. The alkaline atoms always reside on

the surface of the droplet [80,89,90], whereas alkaline earth atoms are a borderline case

and their location depends on the atomic number and may depend on the isotope
of helium [83,91]. Therefore, heavier alkaline earth atoms may provide

an important probe of mixed 3He–4He droplets [91]. One may note that all known

molecule–He interactions are significantly stronger than He–He interactions. Thus, all
molecules end up inside the droplets.
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Although there are important issues concerning physics of single atoms, see for example

the time-resolved measurements of excitations of Al [92], the main theme of investigations

of metals embedded in or attached to the surface of the nanodroplets are studies of small

metal clusters. The ultimate goal of such studies is a better understanding of the structure

and properties of metals. For example, sodium dimer and trimer were studied in Refs.

[77,78,93]. This work provided precise data for the dimer in the triplet state and

the first characterization of the trimer in the quartet state. The latter system was found

to exhibit extremely strong non-additive interactions [94,95].

3. Pure helium

In order to model a molecule–Hen cluster with n > 1 or to model superfluid pure
helium, one has to know the interaction potential between helium atoms. Knowledge
of this potential is also important for many other applications of helium in science and
industry. In particular, helium is used as a benchmark system in thermal physics [96,97]
since it is closest to an ideal gas. The deviations of helium gas from ideality can be mea-
sured or computed from first principles. In recent years, the latter approach was able
to provide more accurate values for these deviations than the former one. Since this accu-
racy determines our ability to establish better international thermodynamic standards
(e.g. of temperature and pressure) [96], ab initio calculations of the interaction potential
for the helium dimer have been pursued by a large number of research groups in recent
years [98–112]. The current state of thermodynamics standards and their relation to the
thermophysics of helium is discussed in Ref. [113].

Intermolecular interaction energies can be computed using the supermolecular

(SM) approach, i.e. subtracting the total energies of monomers from the total energy

of a dimer, or using symmetry-adapted perturbation theory (SAPT) [113–115], i.e.

calculating the interaction energies directly as perturbative corrections (relative to the

energies of infinitely separated monomers). In the former approach, one can use in prin-

ciple any standard electronic structure method and virtually all available methods have

been applied to He2. Due to the smallness of the helium dimer interaction energy, size-con-

sistent methods have to be used, i.e. methods having the property that the dimer energy

converges to the sum of monomer energies for very large interatomic separations R.

With the current accuracy goals, the interaction energy is usually computed using several

different methods at the same time. Lower level and therefore computationally more effi-

cient methods are applied with larger basis sets and more expensive high-level calculations

are performed in smaller bases. In recent years, the most popular method of the first type

has been the coupled-cluster theory with single, double, and non-iterative triple excita-

tions, CCSD(T) [116,117]. For larger systems, less expensive many-body perturbation

theory at nth-order level, n¼ 2–4 (MBPTn) [118], is also often used. This method is some-

times called MPn if the Møller–Plesset partition of the Hamiltonian [119] is applied. At the

highest level, one has now to use the full configuration interaction (FCI) method which is

equivalent to the exact solution of the Schrödinger equation in a given orbital basis set.

The SM interaction energies always have to be computed using the counterpoise (CP)

method [102,120–124] to remove the basis set superposition error (BSSE). Although

BSSE vanishes in the limit of the complete basis set and becomes very small in the largest
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basis sets used in some recent calculations, it is always comparable to uncertainties result-

ing from basis set incompleteness.
The SAPT approach is usually applied at the second or third order in the intermolecular

perturbation operator V [113,114,125]. However, for the interaction of two-electron

systems, a special program has been developed which allows calculations to arbitrary

order [102,123]. The convergence properties of SAPT have been extensively studied

[126–130] – for a review see Ref. [113] – and for He2 several versions of SAPT converge
well. The limit value of the interaction energy agrees very well with the interaction

energy computed in the same orbital basis set using the CP-corrected FCI method.

This, in fact, provides one of the best arguments for the correctness of the CP method

of removing BSSE since SAPT is by definition BSSE free.
SAPT calculations for He2 date back to the 1970s [131,132] and continued in the 1980s

[133–135]. The complete potential was produced in 1996 [101,102] and has since become

the most often used ab initio potential for the helium dimer (it will be called SAPT96

below). It has, in particular, been applied to calibrate thermophysical measurements
[96]. An important element of the SAPT calculations for He2 has been the use of explicitly

correlated basis sets in the form of the so-called Gaussian-type geminals (GTG), i.e.

functions with an exponential dependence on the square of the interelectronic distance.
This basis set is complete [136,137] and leads to significantly more accurate

interaction energies than calculations using orbital bases which are slowly converging

due to the difficulties in reproducing the electron–electron cusps. The GTG bases can

also be applied in standard correlation energy calculations [138–144]. These bases
were used to describe the bulk of the He2 interaction energy, whereas a small remaining

contribution was computed using orbital basis sets.
Recently, the calculations of Refs. [101,102] have been revisited [111,112]. Several

methodological improvements have been developed and basis sets much larger than
before were used. A major improvement was an application of extrapolations to the

complete basis set (CBS) limit in the orbital calculations. Another one was the use

of the SM approach for smaller R and of SAPT for larger R, depending on the error

estimates. The performance of CBS extrapolations was tested against GTG results
on terms that can be computed both ways [108,109]. In the SM calculations [111],

the major part of the interaction energy was obtained using the GTG implementation

of the coupled cluster theory at the double excitations level (CCD) [141] and for some
distances at the single and double excitations level (CCSD) [145]. Relatively small contri-

butions from triple and quadruple excitations were subsequently included employing the

orbital CCSD(T) and the FCI methods and using very large basis sets – up to doubly aug-

mented septuple- and sextuple-zeta size, respectively, supplemented by mid-bond
functions. These calculations were followed by extrapolations to the CBS limits.

In SAPT calculations [112], the first-order interaction energy and the bulk of the

second-order contribution were obtained using GTG basis sets and were converged to

about 0.1 millikelvin (mK) near the minimum and for larger R. The remaining second-
order contributions available in the SAPT suite of codes were computed using very

large orbital basis sets, up to septuple-zeta quality, augmented by diffuse and mid-bond

functions. The accuracy reached at this level was better than 1 mK in the same region.
Since, as discussed above, high-order SAPT calculations converge to FCI results

for He2, and the FCI approach is computationally more efficient, all the remaining
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components of the interaction energy were computed using the FCI method in bases up to

sextuple-zeta quality. The latter components, although contributing only 1% near the

minimum, have the largest uncertainty of about 10mK in this region. The SM results

for R � 6.5 bohr were combined with the SAPT results from 7.0 to 12 bohr to fit analytic
functions for the potential and for its error bars. The potential fit uses the best available

van der Waals constants C6 through C16, including C11, C13, and C15, and is believed to be

the best current representation of the Born–Oppenheimer (BO) potential for helium.

The fit exhibits the well depth De¼ 11.006� 0.004K and the equilibrium distance

Re¼ 5.608� 0.012 bohr. Since the total energy of the dimer is about 6 atomic units,
an accuracy of 2 ppb has been achieved. Compared to the 1996 SAPT potential, the

uncertainties have been decreased by more than an order of magnitude. We will refer to

the potential of Refs. [111,112] as CCSAPT07.
The estimates of uncertainties given above are not rigorous, but are believed to be

reliable. Such estimates are obtained by analysing the rate of convergence of the results

with basis set size and performing extrapolations to the CBS limits in several different
ways. The reliability of past estimates can be evaluated as more accurate calculations

become available. For example, the uncertainties of the SAPT96 potential [101,102] are

for most points consistent with the CCSAPT07 potential. Only for a few points, including

the minimum separation, were the uncertainties underestimated by up to about a factor

of 2. The reliability of the estimates can also be tested by large-scale calculations using

completely different methods. The comparisons of the CCSAPT07 potential with the
results of quantum Monte Carlo calculations [110] and four-electron explicitly correlated

calculations [146] fully support the error estimates of Refs. [111,112].
With the accuracy level achieved, various post-BO effects become comparable or even

larger than the BO-level uncertainties. The most important post-BO contributions

are the adiabatic (diagonal) correction [147], relativistic corrections [148], and quantum

electrodynamics corrections [149]. At the van der Waals minimum distance, the largest
of such corrections are of the order of 10mK (but there is a mutual cancellation among

them). These corrections have recently been computed for a large enough number of

interatomic separations to fit a potential and the results for finite R have been smoothly

connected with the asymptotic dependence [150].
The internal estimates of uncertainties can be supported by using the potential to com-

pute various observables and comparing them to experimental data. The potential of Ref.
[112] was applied to the calculation of the properties of the bound state of 4He2. This

very unusual, extremely extended molecule is difficult to study experimentally [151–153].

The asymptotic retardation correction was added to the BO potential at all separations.

The computed value of hRi¼ 47.8 Å (using atomic masses in nuclear dynamics calcula-

tions) is consistent with the best measurement of this quantity from Ref. [153], which
gave hRi ¼ 52� 4 Å. The dissociation energy of 1.56mK is about 10% above the upper

limit of the measured value amounting to 1.1þ 0.3/�0.2mK. The scattering length is

equal to 91.8 Å. Thus, the agreement between theory and experiment on the bound

state of the helium dimer provides additional support of the estimates of uncertainty

made in Refs. [111,112].
The CCSAPT07 potential has not yet been applied in calculations of thermophysical

properties of helium, but SAPT96 has been used extensively [96,154]. The latter potential

predicted the properties better than any earlier helium dimer potential. Hurley
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and Moldover [96] concluded: ‘we recommend the ab initio results be used as standards

for calibrating instruments relying on these thermophysical properties’. It is expected

that the CCSAPT07 potential will result in even more accurate predictions and
will allow the construction of new temperature and pressure standards based on

ab initio calculations.
The CCSAPT07 potential is compared in Figure 1 with the SAPT96 potential and the

most often used empirical potentials: HFDHE2 [155], HFD-B(HE) [156], and LM2M2
[157]. Plotted are the differences between a given potential and CCSAPT07. Also the

error bars of CCSAPT07 are plotted (these error bars are too small to be visible in the

first panel). Figure 1 shows that all the differences are significantly larger than the error

bars of CCSAPT07. The two older empirical potentials, often used in simulations of
helium, are significantly less accurate than the SAPT96 potential. Interestingly enough,

the accuracy of the least popular of the three empirical potentials, LM2M2 [157],

is comparable to that of SAPT96. One should point out, however, that LM2M2 is not
a typical empirical potential but rather an ab initio potential tuned to improve agreement

with experiment. Aziz and Slaman [157] first fitted several potentials to the interaction

energies computed by Liu and McLean [158] and by van Duijneveldt et al. [159,160].

Then some parameters in these potentials were carefully changed to reduce discrepancies
with experiment without significant departures of the potential from the computed points.

In order to model helium nanodroplets or bulk helium, one also needs to know pairwise

non-additive interactions between helium atoms. Although such interactions are fairly

small and have been neglected in most previous work, with the increased precision of
pair potentials, the three-body non-additive contributions have to be taken into account.

Surprisingly, no accurate non-additive potential has been available in the literature until

recently, except for the potential of Ref. [161] which has, however, a very complicated

form. The older three-body non-additive helium potentials [162–164] are simple
but of rather low accuracy compared to more recent results (see the discussion of these

potentials in Ref. [161]) and have been found to deteriorate the agreement with experiment

[165] when used in simulations of condensed helium. An accurate and reasonably simple
potential fit of helium three-body non-additive interaction energy has been

published recently [166] using both the SM approach at the CCSD(T) level and the

three-body SAPT method [161,167]. Large basis sets were applied, up to the quintuple-

zeta doubly-augmented size. The fitting functions were similar to those developed in
Refs. [168,169] and contained an exponentially decaying component describing the

short-range interactions and damped inverse powers expansions for the third- and

fourth-order dispersion contributions. The largest uncertainty of the potential comes

from the truncation of the level of theory and can be estimated to be about 10 mK or
10% at the trimer’s minimum configuration. The relative uncertainties for other

configurations are also expected to be about 10% except for regions where the non-addi-

tive contribution crosses zero. Such uncertainties are of the same order of magnitude as the
current uncertainties of the two-body part of the potential.

The new global non-additive potential [166] made possible precise comparisons of the

three-body to two-body effects. Figure 2 of Ref. [166] plots such a ratio for a broad

range of isosceles triangle geometries. For configurations with separations larger than the
minimum separation, the three-body energies are smaller than 0.1% of the two-body

term. However, in the region of the minimum, this ratio is larger and amounts to about
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0.3%. When the interatomic distances are decreased further, at some point the two-body

energy crosses zero, but the non-additive contribution remains approximately
constant there. Thus, in this (relatively small) region, the three-body effects dominate the

two-body ones. The ratio is also fairly large, of the order of 1%, for most strongly repulsive
configurations.

Knowledge of the interactions between helium atoms allows one to perform simulations

of pure helium. At low temperatures, helium exhibits a strong quantum character,
therefore such calculations have to be performed applying quantum approaches.

The most often used are path integral Monte Carlo (PIMC) [170] and density functional
theory (DFT) [171] methods. The former is an ab initiomethod and gives results dependent

on temperature. The latter is an empirical method, heavily parametrized on measured
properties of liquid helium, and gives only T¼ 0K properties (although recently

a T-dependent DFT approach has been developed [172]). At T¼ 0, also methods such

as variational MC (VMC) or diffusion MC (DMC) [173] can be used. There are several
versions of DMC, the two most often used for Hen–molecule clusters are the projection

operator imaginary time spectral resolution (POITSE) method [174] and the reptation
quantum Monte Carlo (RQMC) [175] method. The PIMC calculations for helium can

be performed with periodic boundary conditions to represent bulk liquid or for
helium clusters. At present, such calculations can be done with high numerical accuracy

and represent liquid helium or nanodroplets very well. As mentioned in the
Introduction, there is still considerable debate on how to identify superfluidity and

BEC in microscopic calculations. In the case of superfluidity, one usually defines

the superfluid behaviour by mimicking the macroscopic definition and placing the
helium cluster in a slowly rotating external field [27] to find the fractions of the classical

and quantum response of the system. Sindzingre et al. [27] have shown that already the
4He64 cluster behaves similarly to bulk helium in that the normal fluid fraction decreases

from one to zero between 2K and 0K. It is more difficult to determine the fraction of
atoms that form BEC. The textbook descriptions of BEC hold only for non-interacting

bosons and define BEC as macroscopic occupation of the ground-state wavefunction
which is the symmetrized product of identical single-particle wavefunctions. However,

for an interacting system, the ground-state wavefunction, even at T¼ 0, cannot be repre-
sented as such a product since excited symmetrized products are needed in the expansion

to describe correlations between the particle motions. On the other hand, the ground-state

single-particle function is also characterized by zero momentum of the particle. Thus, one
may determine the probability that an atom is in such a state and use it as a measure of the

condensate fraction. From Heisenberg’s principle, the zero-momentum state corresponds
to an infinite extent of the single-particle wavefunction in position space. The latter defini-

tion is more convenient to use in PIMC and the condensate fraction is determined as the
large-distance limit of the single-particle density matrix. Calculations by Ceperley and

Pollock [176] indicate that for T! 0K, the condensate fraction approaches 10%. More
recent calculations give slightly smaller numbers. Moroni and Boninsegni [177] obtained

6.9� 0.5%. This value agrees very well with neutron scattering measurements by Glyde

et al. [178] which gave 7.25� 0.75%. The most recent PIMC calculation by Boninsegni
et al. [179] gave a value of about 8%. These calculations have smaller error bars than pre-

vious work and agree very well with the measured [178] condensate fractions for
T > 1:3K.
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4. Atoms, molecules, and clusters in helium nanodroplets

Modelling of molecule–Hen clusters requires knowledge of the molecule–He potential.
Several such potentials have been developed in the past decade. Often clusters of
molecules are of interest; then in addition one has to know the interaction potentials
between molecules and atoms constituting the cluster. We will start from the simplest
case of a single molecule inside a cluster. As discussed earlier, the spectra of molecules
in helium nanodroplets resemble gas-phase spectra except that the rotational constant
B is decreased. For light rotors, the decrease is usually very small. For heavier
rotors, the decrease is often close to a factor of three, although in some cases it is
as large as six. In the first approximation, the trends can be explained by a very
simple model assuming that a number of helium atoms stick to the impurity molecule
and rotate with it [180]. It turned out that if the helium atoms are placed at the
position that minimize the energy of a given molecules–Hen cluster and at the same
time n is chosen such that the binding energy per helium atom is maximized, this
simple model often gives near-quantitative results. One should emphasize, however,
that this model does not capture any essential physics of the motion of an impurity
molecule in superfluid helium. Much more reliable and physically sound predictions
can be obtained from quantum MC calculations on molecule–Hen clusters, which
show that a number of helium atoms adiabatically follow the motion of the molecule,
resulting in decreased rotational constants. This also explains the success of the
simple model.

4.1. Monomers

Rotational spectra of a few single-molecule very light rotors (with rotational constants
larger than 5 cm�1) have been measured in helium nanodroplets: HF [181], H2O [182],
NH3 [183,184], and CH4 [185]. For these molecules, the rotational constants in the
gas phase are larger than in helium nanodroplets by 1.6%, 3%, 5%, and 4.5%, respec-
tively. The recent measurement for NH3 by Slipchenko and Vilesov [184] brought the
reduction of B for this system to the expected range, as the older measurement by
Behrens et al. [183] gave a surprisingly large ratio of 33%. Apparently, no quantum
mechanical calculations of the rotational constants in helium have been performed for
these systems, although very accurate ab initio He–molecule potentials are available
for all of them [186–189] and quantum MC calculations for some of these systems
have been published: HF–Hen was investigated by Blume et al. [190] and, very recently,
Viel et al. [191] performed DMC calculations on NH3–Hen clusters. In contrast, heavier
single-molecule rotors, for which the rotational constants decrease by a factor of 3 or so,
have attracted a lot of attention. For such systems, measurements have been done both
in helium nanodroplets and in large, size-controlled clusters. For several of these sys-
tems, mainly those which are linear molecules, quantum MC calculations have been per-
formed. For some molecules, the shifts of the rovibrational transitions due to the helium
environment have also been measured and computed. All molecules treated both by
theory and experiment will be discussed below. In some cases, the initial theoretical esti-
mates of the behaviour of rotational constants were in disagreement with experiments.
So far, such problems have been traced down to insufficiently accurate intermolecular
potentials used in the calculations.
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4.1.1. N2O and CO2: interpretation of experiments based on topology of potentials

One of the more intriguing experimental findings in measurements of rotational constants
in helium nanodroplets was the different extent of the reduction of B for CO2 and N2O.
Nauta and Miller [47] obtained the infrared spectra of these two molecules and observed,
unexpectedly, that the rotational constant of N2O in helium nanodroplets was half that of
CO2, while in the gas phase these constants are similar. This result was unexpected since
due to the similarities of the molecules (N2O and CO2 are isoelectronic, linear, of similar
lengths, possess zero or nearly zero dipole moments, and have similar values of quadrupole
moments and dipole–dipole polarizabilities), their interactions with helium were presumed
to be nearly the same. Lacking an accurate potential surface for He–N2O, Nauta and
Miller were unable to explain their findings. One should also point out that the factor
of 5.8 decrease observed for N2O [47] is one of the largest decreases of the rotational con-
stant between the gas phase and helium-nanodroplet values observed for any molecule.
Thus, it would be important to understand what features of the potential energy surfaces
lead to these extreme cases.

To resolve this problem, SAPT calculations were performed by Chang et al. [192] to
determine a two-dimensional potential for He–N2O. The ab initio interaction energies
were fitted to an analytic function. The resulting fit is shown in Figure 2. Rovibrational
energy levels of He–N2O were then computed [192] on the SAPT surface. At the time

Figure 2. Potential energy surface for He–N2O [192]. R is the distance between He and the centre of mass of
N2O and the angle � ¼ 0 corresponds to the configuration He–ONN. The energies are in cm�1.
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the calculations were performed, no measurements of He–N2O spectra were available, but

such measurements were performed in parallel by Tang and McKellar [193]. The theore-
tical and experimental spectra agreed very well, with discrepancies typically of the order of

0.01 cm�1. Later, He–N2O potentials were calculated at the CCSD(T) level by Zhou and

Xie [194] and by Song et al. [195]. The two new potential surfaces, as well as the spectra
computed from these surfaces, were very close to those obtained by Chang et al. [192].

More recently, Zhou et al. [196] obtained a three-dimensional potential for He–N2O,

choosing as the third dimension one of the normal vibrational coordinates of the isolated
N2O molecule. Chang et al. [192] also performed some single-point calculations for the

He–CO2 dimer in order to compare the two potentials at the same level of theory and
basis set completeness. These results agreed reasonably well with literature ab initio

He–CO2 potentials [197–199].
The comparisons of the SAPT interaction energies for He–N2O with those for He–CO2

[192] have shown that despite the similarities discussed above, the former interaction is
quite significantly, about 30%, stronger than the latter. The physical origins of this differ-

ence were elucidated [192] using the SAPT decomposition of the interaction energies. Also

the rovibrational states of He–N2O were compared with those of He–CO2. This greater
potential depth qualitatively explains the greater reduction of the N2O rotational constant

than that of CO2 in helium nanodroplets since a stronger interaction results in a greater
probability of helium atoms sticking to the impurity.

In order to get more insight into the issue of the attachment of helium atoms to N2O and

CO2, Chang et al. [192] found the minimum structures for Hen–N2O and Hen–CO2 clusters

up to n¼ 9 and computed the rotational constants for these structures. For n¼ 1 to 6, the
constants were steadily decreasing from their gas phase values of 0.42 and 0.39 cm�1 to

0.09 and 0.08 cm�1, respectively, at n¼ 6 (the cluster constants have been scaled for the
effects of anharmonicity, i.e. the radius of the ring was increased by the ratio of the average

and minimum separations in the dimer). The constants for both molecules remained close

to each other at each n. This behaviour can be expected based on the topology of the
potentials with the minimum at near T-shaped configuration. Thus, in three-dimensional

space, there is a circle of minimum potential equatorial to the molecule. With the minimum

separation of 3.0 Å for both dimers and the 3.0 Å minimum separation for He–He, there
is enough space on the circle to place up to six helium atoms there. Thus, the potential

topology leads to the similarity of the rotational constants in the range n¼ 1 to 6. The

resulting ring (also called a belt, donut, or doughnut) of helium atoms is characteristic
for many linear triatomic or larger molecules since the global minima of the He–molecule

potentials tend to lie in this region. The spectra of Hen–N2O have been measured by
Xu et al. [200] in parallel with the work of Chang et al. [192] and the spectra of

Hen–CO2 some time later [201,202]. The experiments have found the same near equality

of the constants up to n¼ 5 as predicted by theory [192]. For n¼ 6, the experimental
values were 0.09 and 0.13 cm�1 [200,201], respectively. Thus, the simple method of

Ref. [192] agreed very well with experiment for N2O, but worse for CO2. In the latter

case, however, the theoretical values agree well with experiment up to n¼ 5 (at this size,
the theoretical constant is 0.10 cm�1 and experimental 0.11 cm�1), but then the experimen-

tal constant increases between n¼ 5 and 6, while the theoretical one continues to decrease.

This comparison shows that the weaker CO2 potential cannot hold six helium atoms in the
ring. In a dynamic picture, a too weak potential results in a smaller probability of clusters

International Reviews in Physical Chemistry 291

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
5
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



beyond some n being formed and surviving, i.e. in a lesser amount of adiabatic following.
Whereas simple theory cannot predict a priori at what n this happens, the knowledge
acquired from the behaviour of N2O and CO2 can be applied in future to other systems
of this type.

The analysis of the minimum structures of the clusters with n up to six does not provide
any better theoretical explanation of the differences between the B values of N2O and CO2

in the nanodroplets than the general statement given above. However, some more clues
on the origins of this difference come from considerations of minimum structures of some-
what large clusters [192]. For N2O, the value of B computed at n¼ 6 is very close to that
measured in helium nanodroplets (0.07 cm�1 [47]), whereas for CO2 it is almost a factor of
2 too small (the nanodroplet value is 0.15 cm�1 [47]). In the simple theoretical approach,
the further addition of helium atoms up to n¼ 9 lead to further decreases of B for both
systems, but the rate of decrease is much smaller than in the range n¼ 1 to 6. For N2O,
this finding agrees reasonably with experimental observations [200] which have found
a nearly constant B in the range n¼ 6 to 9. However, for CO2 the experiments have
found [201,202] that the rotational constant actually starts to increase from n¼ 6
and becomes larger than the nanodroplet value at n¼ 8. The reasons for this different
behaviour can be understood by analysing Figure 3 adapted from Ref. [192]. As one
can see, for N2O the additional helium atoms tend to gather at the O end of the molecule,
where there is a fairly deep secondary minimum [192]. Thus, these atoms do not interact
with the atoms of the ring. This minimum should be deep enough to keep a helium atom
rotating with the molecule and in this way decreasing the rotational constant. In contrast,
since the two secondary linear minima are weak in the case of CO2, the additional helium
atoms aggregate in the ring region. These atoms are too weakly bound to rotate with the
molecule and by colliding with atoms of the ring tend to displace the latter out of the ring,
which leads to a reduction of the rotational constant upon the increase of n. The atoms
that are unable to rotate with the molecule form a ‘solvent’ within which a Hem–molecule
cluster, with m < n, freely rotates, which is reminiscent of superfluidity. From this
analysis, one can conclude that it is not only the strength of the He–N2O interaction
but also the shape of the potential surface with the two fairly deep minima that
combine together to produce one of the largest reductions of B between the gas
phase and the nanodroplets. One should emphasize that although the minimizations of

Figure 3. [Colour online] Minimum structures of He9–N2O (left) and He9–CO2 clusters [192].
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molecule–Hen potentials resulting in static structures such as presented in Figure 3 are
useful to gain some insight into the behaviour of a given system, the dynamics of such
a cluster involves long-range motions of helium atoms. However, if the probability density
resulting from quantum MC calculations is plotted around an impurity, the high-density
regions approximately correspond to the potential minima.

One can summarize this discussion by stating that a careful analysis of accurate
potential energy surfaces of Hen–N2O and Hen–CO2 clusters provides quite a convincing
rationalization of the differences in the reduction of the rotational constants for the two
molecules. Two factors contribute to the larger reduction in the case of N2O: about
30% deeper potential well and the shape of the potential energy surface in the region of
the secondary minimum. These explanations are confirmed by quantum MC calculations
which will be discussed in the next subsection.

The spectra of a system consisting of a linear molecule and an equatorial ring of
helium atoms should include the so-called Q branches resulting from rotations around
the symmetry axis. Such branches are not observed for most linear molecules in
helium nanodroplets. Within the simple model, one can explain this fact as resulting
from the symmetry of the system [180,203]. Quantum MC calculations provide a different
explanation: the helium atoms show a superfluid response to rotations around the mole-
cular axis, see the next subsection.

The beam experiments have been carried also for larger clusters, up to n ¼ 80 for
Hen–N2O [25] and up to n ¼ 20 for Hen–CO2 [201,202]. In the former case, it was found
that the constant eventually turns up at n ¼ 11, similarly as in the case of CO2 at n¼ 6.
For larger n, B of Hen–N2O oscillates with n at about 20–50% above the droplet value
[25]. This behaviour will be further discussed below. In the range available for Hen–CO2

[201,202], a similar oscillatory dependence is also visible.

4.1.2. N2O and CO2: interpretation of experiments based on quantum MC calculations

In order to move beyond the simple model, one has to perform quantum mechanical
calculations for Hen–molecule complexes using He–He and molecule–He potentials.
The first such calculations had already been done in the mid-1990s [204,205]. This type
of calculation has been reviewed in Refs. [40,41,206]. Quantum MC calculations
for Hen–N2O and Hen–CO2 clusters have been performed in Refs. [207] and [29,202],
respectively. The predictions of the rotational constants are not straightforward for the
MC-type approaches used so far since such approaches normally reproduce only the
ground state properties of investigated systems, whereas the constants are the measure
of rotational excitations, i.e. require the knowledge of excited state energies. For quasi-
rigid bodies, one can estimate the rotational constants from the average moments of iner-
tia calculated from ground-state wavefunctions, but this method obviously cannot be used
for Hen–molecule clusters when only some helium atoms participate in the rotational
motions. In fact, such rotational constants, if computed, would offer little improvement
over those from the simple minimization method described above. Several extensions
of quantum MC methods have been proposed which allow calculations of rotational
constants. One approach is to perform fixed-node DMC calculations [40], with nodes
corresponding to the first excited rotational state. Another approach, used in RQMC
work, utilizes the fact that in the DMC method, as the wavefunction is propagated in
imaginary time �, although it converges to the ground-state wavefunction, contributions
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from excited states are contained in the wavefunction for finite �’s. The lowest excitation
energies can be extracted from multipole autocorrelation functions in � by fitting these
functions with a sum of exponentials of excitation energies [208]. A different method,
involving integral transforms [174], is used in POITSE work, however, the method of
the multiexponential fit can also be applied there. These two methods were compared in
the case of Hen–N2O clusters by Paesani and Whaley [207] (within the POITSE approach)
and agreed to 2–3 significant digits in rotational energy levels.

Paesani and Whaley [207] performed extensive calculations for Hen–N2O applying

several MC methods: VMC, DMC, PIMC, and utilizing the He–N2O potential of

Chang et al. [192]. In general, their findings about ground-state configurations

confirmed those of Chang et al. [192] discussed above. One important exception is that

already at n¼ 6 one of the helium atoms is most likely found in the secondary minimum

rather than in the ring. However, starting with n¼ 8, the ring does contain six

atoms, as shown in Figure 3. The rotational constants, computed in Ref. [207] for n¼ 1

to 16, agreed fairly well with the measured values [200] available at that time up

to n¼ 12. Later, the rotational constants were measured also for larger n [25] and the

calculations of Ref. [207] predicted the opposite trend in the range n¼ 13 to 16 than

found experimentally.
The PIMC calculations of Ref. [207] shed light on superfluid properties of the clusters.

It has been found that the atoms in the ring exhibit superfluid response starting from n¼ 5,

but only for the motions around the molecular axis. The superfluid fraction for such

motions, denoted in Ref. [207] as f sk , changes from 0.05 for n¼ 4 to 0.9 for n¼ 5.

It is important to realize that the motions are cyclic permutation exchanges which do

not correspond to rotations of the ring around the molecular axis [29]. Thus, there is no

angular momentum projection along the molecular axis and the rotational spectra are

characteristic for a linear rotor. Consequently, the symmetry arguments of the simple

model are not needed to explain the non-existence of the Q branches. One may,

of course, modify the simple model by assuming that the ring exhibits a superfluid

response to rotations around the molecular axis. The findings of Ref. [207] also correlate

well with the fact that some Q branches are observed for very small Hen–N2O clusters, up

to n¼ 6 [25]. The Q branches have also been observed in nanodroplets for some linear

dimers, see Section 4.2.4.
The superfluid fraction is much smaller for the motion along the molecular axis than

around it. This quantity, denoted in Ref. [207] as f s?, is practically zero up to n¼ 7

and then increases to about 0.2 [207]. This increase correlates well with the fact that the

rotational constant has the lowest value at n¼ 8 and it only slightly increases for larger

n. One may say that, for larger n, six helium atoms form the ring, �2 atoms are attached

in the region of the secondary minimum near the O end of the molecule, and the remaining

atoms form a superfluid solvent which does not rotate with the molecule. The �8

atoms attached to the molecule are not completely rigid but undergo exchanges with the

remaining atoms. The degree of such exchange can vary with n and in the effect the rota-

tional constant continues to change, although not as much as for lower n. One should men-

tion that the analysis of the superfluid behaviour performed in Ref. [207] and described

above is possible only assuming that the N2O molecule is fixed in space. For rotating

and translating N2O, only the total, isotropic estimator of superfluidity is available.

This estimator can also be computed for a fixed N2O and it has been found
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to be rather sensitive to this approximation. Thus, the results for the superfluid fraction

discussed above probably have large uncertainties. Recently, Xu et al. [209] developed
a method for PIMC calculations of an estimator of the superfluid fraction which they

compare to the f s? values of Ref. [207]. In contrast to Ref. [207], the method of Ref.

[209] does take into account the motion of N2O. The superfluid fractions computed in
Ref. [209] are dramatically different from those of Ref. [207]: about four times larger in

the range of n from 10 to 16.
A similar study of Hen–N2O clusters was performed by Moroni et al. [210] using

the He–N2O potential of Ref. [195] and the He–He potential of Ref. [102]. One can

now compare both the calculation of Ref. [207] and that of Ref. [210] with the new

measurements carried out by McKellar up to n ¼ 80 [25]. This comparison shows that
although both calculations predict the general experimental trends in the dependence of

B on n reasonably well (except for the predictions of Ref. [207] in the range of n from

12 to 16), the remaining discrepancies with experiment are significant and call for further
theoretical effort. Overall, the calculations of Ref. [210] agree with experiment better than

those of Ref. [207], which may be partly due to the use of more accurate potentials in the

former case. Still, for several values of n, the discrepancies between the predictions of Ref.
[210] and experiment are around 10% and at n ¼ 30 the discrepancies are as large as 20%.

Later calculations by Xu et al. [209] using the PIMC method and the same potentials as
in Ref. [210] gave results very similar to those of Ref. [210].

Let us analyse what may be the reasons for the discrepancies discussed above. Since

the He–He potential of Ref. [102] is accurate to better than 1% [102,112] and the

He–N2O potential of Ref. [195] gives the rotational transition energies of He–N2O
which agree with experiment to about 1%, the fairly large discrepancies between experi-

ment [25] and the calculations of Ref. [210] observed for the larger clusters are probably
not due to the inaccuracies of the two-body potentials in any significant measure, at least

not in the regions near minima. There is a chance that the He–N2O potential of Ref.

[195] is insufficiently accurate at large separations which might explain why the agree-
ment between theory and experiment deteriorates for large clusters. This potential was

obtained by interpolation and lacks the correct asymptotics of the potential of

Ref. [192]. If this source of errors is small, one should consider the possibilities that
the discrepancies are due either to the assumption of rigidity of N2O or to many-

body non-additive effects [115]. The rigidity approximation was investigated by

Jeziorska et al. [211] on the example of the Ar–HF dimer. It was found that if the
HF geometry averaged over the ground-state vibration function – the so-called hri geo-

metry – is used (as was the case in the He–N2O calculations of Refs. [192,195]),
the difference between rigid-monomer and three-dimensional calculations of the dissocia-

tion energy of the complex is only 1%. This difference should be even smaller for N2O

since the amplitude of the vibrational motion is much smaller than in the case of HF.
Three-dimensional calculations for He–N2O have in fact been recently performed

[196]. The values of the energy the ground rovibrational state of He–N2O from such cal-

culations are about 1% different from those from the two-dimensional calculations,
which is larger than just estimated. However, this is mainly due to the fact that the

authors of Ref. [196] used the equilibrium monomer geometry, which leads to much

larger errors than the hri geometry (4% in the case of Ar-HF [211]). Thus, the rigidity
assumption in the DMC calculations for Hen–N2O should lead to much smaller
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uncertainties than the observed discrepancies between theory and experiment. The other

possible source of uncertainties, the pairwise non-additive interaction, should be domi-
nated by three-body effects. The three-body interactions between helium atoms are smal-

ler than the errors of the two-body helium potentials used [161,166]. No calculations

have been performed for He2–N2O so far. In fact, apparently no data are available
on any cluster of this type. Jakowski et al. [212] have analysed non-additive effects in

He2–CO2, but no information about the relative importance of three-body effects can

be extracted from their paper. For Ar2–HF, the three-body non-additive interactions
amount to 3.5% of two-body interactions [213] at the minimum configuration. This

value is certainly an upper bound for the analogous contribution in He2–N2O since
the non-additive interactions are relatively more important for polar and polarizable

monomers, see Figure 33.1 in Ref. [115]. Even if many-body effects contribute 1–2%

to the energies of Hen–N2O clusters, this would be insufficient to explain the discrepan-
cies between theory and experiment in the rotational constants of the clusters.

In summary, the discussed discrepancies between theory and experiment are probably

due only to a small extent to the uncertainties of the potential energy surfaces (except

for the possibility of errors resulting from the long-range behaviour of the potential
of Ref. [195]) and the reasons for the discrepancies have to be found elsewhere.

The analysis performed above indicates also that the differences between the results
of Refs. [207] and [210] are probably not entirely due to the use of different potentials.

Thus, it would be of importance to perform calculations on Hen–N2O using the computer

codes of these two groups with identical potentials. This would allow one to estimate
uncertainties resulting from the use of the DMC approach. One may also compare

in the future the energies of rotationally excited state (as this has been already done,

e.g. in Refs. [214,215]) rather than the rotational constants. The values of B are obtained
from fits to energy levels and these fits can be done in several ways, see the discussion

of this issue in Ref. [207].
Quantum MC calculations for Hen–CO2 have been performed by Tang et al. [202] using

the He–CO2 potential of Korona et al. [199] and by Paesani and Whaley [29] using the

potential of Yan et al. [197]. The results of the former calculations are probably somewhat

more accurate since these authors used better intermolecular potentials, not only for
He–CO2, but also for He2 (the potential of Ref. [102] used in Ref. [202] is more accurate

than the potential of Ref. [156] used in Ref. [29], cf. Section 3). This is reflected in the

better agreement with experiment achieved by Tang et al. [202], although in both cases
the agreement is good. The computed parallel (motion of helium atoms around the

molecular axis) superfluid fraction is a similar function of n as for the Hen–N2O clusters
[29], but the perpendicular (motion of helium atoms along the molecular axis) superfluid

fraction is dramatically different: it starts growing already at n¼ 6 and becomes close to

one at n ¼ 12. This is clearly connected with the relatively weaker binding of helium in
the secondary minima of the He–CO2 potential than of the He–N2O potential, as found

in Ref. [192] and discussed above. Since the helium atoms corresponding to the

superfluid density do not rotate with the molecule, there is no contribution of
such atoms to the rotational constant B. The large value of the perpendicular superfluid

fraction also implies that the atoms from the ring are involved in exchanges along the

molecular axis, effectively making the ring smaller, which explains the increase of B for
n between 5 and 12.
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4.1.3. OCS

A similar system to those discussed above are the Hen–OCS clusters [24,208,216–220]. The
potential energy surface of He–OCS is fairly similar to that of He–CO2. The gas-phase
rotational constant of OCS is about half that of CO2 and it becomes reduced by a
factor of 2.7 in helium nanodroplets [180], similarly as that of CO2. This means that
more helium atoms have to adiabatically follow the motion of the impurity in the
former case, which is possible due to the slower rotation of OCS. This reasoning is well
supported by the dependence of B on n for small n. The rotational constant decreases
up to n¼ 9 in the case of OCS, to reach a value about 1.7 times smaller than in the droplet,
whereas it decreases only up to n¼ 5 to a value 1.4 smaller than in the droplet in the case of
CO2. For larger n, the Hen–OCS constant initially increases which can be interpreted as
due to the additional helium atoms disturbing the lower-n structures, as in the cases dis-
cussed above. After the value of B approaches the nanodroplet value, it starts to oscillate
slightly above this value, and is still about 5% larger at the largest measured value of
n equal to 72 [24].

Another well determined characteristics of Hen–OCS clusters is provided by the shifts of

the fundamental vibrational frequency of OCS upon complexification. The n-dependence
of such shifts was computed prior to any measurements by Paesani et al. [217] using

the DMC method. The He–OCS potential energy surface dependent on intramonomer
vibrational coordinate was developed earlier by Gianturco and Paesani [221] using

the so-called DFT-D electronic structure method, i.e. performing DFT supermolecular

calculations and supplementing the result with an asymptotic dispersion energy
(note that this DFT approach describing the electronic wavefunction in the Born–

Oppenheimer approximation should be distinguished from the previously

discussed DFT approach applied to describe the wavefunction of helium atoms treated
as point particles). Unfortunately, the predicted vibrational shifts were opposite to those

measured later by Tang et al., see Figure 2 in Ref. [216]. The reason for the discrepancy

was the inaccurate potential energy surface of Ref. [221]. This is not surprising since
a DFT-D approach cannot be expected to provide results of near spectroscopic accuracy,

as actually was seen by Gianturco and Paesani [221] in comparisons of their spectra of
He–OCS with experiment and with calculations of Higgins and Klemperer [222]. Later,

an even more accurate He–OCS potential than that of Higgins and Klemperer was

obtained by Howson and Hutson [223]. After Paesani and Whaley computed a new poten-
tial at the MBPT4 level, theoretical results were brought to excellent agreement with

experiment [207].
The potential of Ref. [221] did better in calculations of rotational constants [224],

however, it predicted the ‘turnaround’ of B at n¼ 6, instead at n¼ 9 [24]. In contrast,
calculations of Moroni et al. [208] with the potential of Ref. [223] gave the turnaround

at the correct value of n. For n � 12, none of the published calculations [208,224–226]
predicted reasonably well the experimental dependence measured in 2006 [23], see

Figure 2 in Ref. [23]. The best agreement was reached by the calculations of Ref. [208]

with the ‘morphed’ potential of Ref. [223] (i.e. with an originally ab initio computed
potential adjusted to better reproduce measured spectra of He–OCS), although the

same group later advocated [225] to use the ‘unmorphed’ potential [223]. Thus, an accurate

reproduction of experimental trends of B(n) remains an important challenge for theory
and may require a further improvement of the interaction potentials involved in quantum
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MC calculations. One should also note that the agreement between theory and experiment is
significantly worse for OCS than for N2O.

4.1.4. HCCCN

Cyanoacetylene (HCCCN) was investigated in nanodroplets as a model of elongated spe-
cies [44,45,49,214,227]. A two-dimensional potential energy surface for He–HCCCN was
developed by Akin-Ojo et al. [203] based on ab initio calculations using SAPT and super-
molecular methods at various levels of electron correlation. HCCCN was taken to be a
rigid linear molecule with the interatomic distances fixed at the experimental ‘r0’ geometry
extracted from the ground-state rotational constants (the more appropriate hri geometry
could not be deduced from available data). An interesting question answered by Ref.
[203] concerned the topology of the potential energy surface. Complexes of helium with
diatomic molecules containing hydrogen have minima in linear configurations [228],
whereas longer linear molecules not containing hydrogen usually have minima in
T-shaped configurations. In the case of HCN, an analogue of HCCCN, the position of
the minimum was controversial for some time but in 2001 Toczylowski et al. [56] per-
formed high-level ab initio calculations and found the global minimum in the linear con-
figuration with the depth of 30 cm�1 and a local minimum at a bent T-shape geometry with
the depth of 22 cm�1. The linearity of the minimum structure was later confirmed by
experiments [229]. Thus, the topology of the potential energy surface for He–HCCCN
was an open question. The complex was found in Ref. [203] to have a global minimum
with the depth of 42 cm�1 at a near T-shaped configuration and a secondary minimum,
30 cm�1 deep, at the linear configuration with the He atom facing the H atom.
Rovibrational bound state calculations of spectral transitions and intensities were per-
formed in Ref. [203] for the 4He–HCCCN and 3He–HCCCN complexes. No experimental
spectra have been published for He–HCCCN at that time, so theory provided the first
characterization of this system. The spectra of He–HCCCN were measured in 2005 by
Topic and Jäger [230] and agreed very well with the predictions of Akin-Ojo et al. [203].
Topic and Jäger have also performed CCSD(T) calculations for He–HCCCN using
much larger basis sets than in Ref. [203], up to augmented quadruple-zeta quality bases
supplemented by bond functions, containing 456 functions compared to 185 functions
applied in Ref. [203]. Such an increase of the basis size increases the time of calculations
at the CCSD(T) level almost 40 times. Despite the significant increase in the size of the
basis, the improvement of the agreement with the measured values was fairly small: the
average discrepancy of computed and measured energy levels was decreased from 2.1%
to 0.6%. This is probably due to two reasons. First, the basis set used in Ref. [203] was
optimized for intermolecular interactions. Second, the bond functions were placed in
Ref. [203] at such a point that these functions always improve the description of the dis-
persion interaction whereas in Ref. [230] the functions were placed in the midpoint of the
separation between the centres of mass of HCCCN and the helium atom, which results for
shorter separations in the bond functions overlapping the HCCCN basis and leading to
linear dependencies. Interestingly enough, one of the surfaces obtained in Ref. [203],
the SAPT2 surface computed at the level of SAPT approximately equivalent to the
supermolecular many-body perturbation theory at the second-order (MBPT2) level, had
the average error of only 0.9%. Such a performance of a lower-level method
can happen for cases where the perturbation expansion (or the cluster expansion) of the
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interaction energies converges in an oscillatory way (see Ref. [231] for several examples of
such behaviour). Apparently, Topic and Jäger [230] have not fitted the computed ab initio
energies by any analytic function. Therefore, they had to compute a large number of points
(697) to achieve sufficiently dense covering of the potential surface. In contrast, only 120
points were computed in Ref. [203] and fitted to a physically justified analytic functional
form.

The effective rotational constant of HCCCN solvated in a helium droplet was

estimated by Akin-Ojo et al. [203] by minimizing the energy of Hen–HCCCN for

n ¼ 2� 12, selecting the n¼ 7 complex as giving the largest magnitude of the interaction

energy per He, and shifting the resulting ring of He atoms to the position corresponding to

the average geometry of the ground state of the He–HCCCN dimer. This estimate was

within 4.8% of the measured value [44]. Thus, the fact that the decrease of the rotational

constant of HCCCN in helium nanodroplets amounts to a factor of 2.9 [45], i.e. is similar

to many other molecules with the gas phase rotational constants of a few tenths of a wave-

number, is due to the topology of the potential energy surface of He–HCCCN which leads

to the creation of the characteristic equatorial ring. The first experiments on Hen–HCCCN

clusters were performed only recently by Topic et al. [214] and were accompanied by quan-

tum calculations using RQMC. Both the potential of Topic and Jäger [230] and the poten-

tial of Akin-Ojo et al. [203] were used in the calculations, the latter one leading to a

marginally worse agreement with experiment for small clusters and marginally better

agreement for larger clusters. The reason for this relation could be that the potential of

Ref. [203] is given in a functional form with the correct asymptotic behaviour for large

intermolecular separation. In contrast, the calculations of Ref. [230] apparently have

not been fitted and the potential is available only in a tabular form. Note that only the

points computed in Ref. [230] at the lower, triple-zeta quality level were used since the

quadruple-zeta quality calculations were performed at a reduced number of points.

The results of RQMC calculations agreed very well with the analysis of Akin-Ojo et al.

[203]. In particular, the n¼ 7 cluster was found to have the rotational transition frequency

about 20% larger than the droplet value. This agreement indicates that for molecules with

as small gas-phase rotational constant as that of HCCCN and with He–dopant interac-

tions in the range of 40–50 cm�1, the adiabatic following is fairly complete. As discussed

above, the N2O molecule belongs to the same category, whereas for CO2 the adiabatic fol-

lowing is much less complete due to weaker intermolecular interactions. However, static

estimates of Ref. [203] for Hen–HCCCN differ from the results of dynamical calculations

of Ref. [214] in that the seventh helium atom is already significantly located at the second-

ary minimum on the H side in the latter approach. The rotational transition frequencies

continue to decrease up to n¼ 9 when the helium atoms attach mainly to the secondary

minimum, as in the case of N2O. Then the frequencies increase until n ¼ 13 to become

about 40% larger than the droplet value. Topic et al. [214] have also used PIMC to calcu-

late the superfluid fraction and found that it increases for n between 5 and 13 and then

becomes approximately constant. When this fraction is still small, the additional atoms

between 6 and 9 continue to be strongly attached to HCCCN and reduce the rotational

constant. After the superfluid fraction increases further, not only do the additional

atoms become superfluid and do not rotate with the dopant, but some of the previously

attached atoms move instantaneously into the superfluid due to exchanges. When the

superfluid fraction saturates, the additional atoms start attaching again to HCCCN,
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reducing the transition frequency. The oscillatory process continues with the next mini-
mum reached at n ¼ 22, close to the complete first solvation with n � 21 [214].

4.1.5. CO

Recently, CO has been added to the list of molecules investigated in size-resolved helium
clusters [232–234]. The spectra of this molecule were later measured in helium nanodro-
plets [235]. These clusters have been investigated in DMC and PIMC calculations
[215,226,235–237]. Some of the DMC calculations [238,239] even predate the experiments.
Paesani and Gianturco [239] calculated in particular the shifts of the fundamental vibra-
tional transition frequency due to the complexification. The calculations were performed
using the SAPT potential of Ref. [240] and a potential developed by the authors using the
DFT-D method [239]. For n¼ 1, the shift predicted by the SAPT potential had the same
sign as the experimental shift of �0.026 cm�1 [241] but was about two times too large in
magnitude, whereas the shift predicted by the DFT-D potential was of opposite sign.
The shifts given by the DFT-D potential were calculated up to n ¼ 100 and at this size
are of opposite sign and three times larger in magnitude than the experimental value mea-
sured later in the droplets by von Haeften et al. [235]. The shifts given by the SAPT poten-
tial were computed up to n ¼ 50 and agree in sign with the droplet experiment but are
almost four times too large in magnitude. Vibrational shifts for intermediate size clusters
are not available. The discrepancies between theory and experiment could be expected to
be due to inaccuracies of the potential energy surfaces, as in the case of the early calcula-
tions of the OCS shifts discussed above. Recently, a three-dimensional potential energy
surface for He–CO has been calculated by Peterson and McBane at the CCSD(T)/CBS
level with a correction for full triple excitations contribution from the CCSDT level of
theory [242]. The He–CO rovibrational levels agreed with experiment somewhat better
than the levels given by the SAPT potential: the root mean square error with respect to
the observed transitions was reduced from 0.04 cm�1 to 0.01 cm�1. In particular, the
shift of the fundamental frequency equal to �0.024 cm�1 agreed very well with experiment.
This potential was used by Skrbic et al. [215] in RQMC calculations for Hen–CO clusters
up to n ¼ 100. The vibrational shifts were about two times smaller than those given by the
SAPT potential and in particular the values saturated around n ¼ 20 at about �0.4 cm�1,
and for n larger than 50 even slightly decreased. At n ¼ 100, the theoretical value was
about 50% larger than the experimental nanodroplet result. Taking into account that
the latter result was estimated [235], the agreement was reasonably good. However,
Skrbic et al. [215] have found that, due an incorrect asymptotic behaviour of the potential
of Ref. [242], the results for larger clusters cannot be trusted. With the correct asymptotic
behaviour, the shifts should continue to decrease and saturate only at a larger n, as it is the
case for the results obtained with the SAPT potential (which has the correct asymptotic
behaviour). Thus, one may expect the discrepancies with experiment to increase when
the potential is improved.

4.1.6. Other monomers

There were a couple of other single molecules for which both measurements in the
helium nanodroplets and theoretical calculations have been performed, but none of
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those molecules have also been measured in size-controlled clusters, so that comparisons
between theory and experiment are only qualitative.

One molecule in this category which has received significant theoretical attention is
HCN. This molecule is an interesting intermediate case between ‘light’ and ‘heavy’
rotors, with the rotational constant in gas phase of 1.5 cm�1 compared to 20 cm�1

for HF, 0.42 cm�1 for N2O, and 0.20 cm�1 for OCS. The spectrum of HCN in helium
nanodroplets was first measured by Conjusteau et al. [243] and a 26% reduction was
found. No experiments have been performed for Hen–HCN clusters with controlled n,
but nevertheless this system was the subject of two papers presenting quantum MC calcu-
lations for such clusters. Paolini et al. [225] used RQMC to investigate the clusters with
sizes up to n ¼ 50. These authors found that the convergence with n to the droplet
value is very fast and the droplet limit is reached for n about 15. Similar conclusions
were reached by Mikosz et al. [244].

The Hen–LiH clusters have been recently investigated using DMC and PIMC by Zillich
and Whaley [61]. No measurements have been performed either for these clusters nor for
LiH in helium nanodroplets. The reason for the interest in this system is that LiH is a light
rotor (the rotational constant is 7.5 cm�1 in the gas phase) with a very anisotropic and
deep (�177 cm�1 [245]) interaction potential. In consequence, the adiabatic following is
strong despite fast rotation [61] and the rotational constant is very significantly, about
16 times, reduced in Hen–LiH clusters. These two systems provide additional examples
that the percentage reductions of the rotational constants is mainly due to the details
of potential energy surfaces.

All the molecules discussed above were linear. Only very few quantum MC calculations
have been published for nonlinear molecules. Sulfur hexafluoride, SF6, the first
molecule whose spectrum was measured in helium nanodroplets, was investigated most
often. The pioneering such calculations of Barnett and Whaley, performed using DMC,
were published in 1993 [204], followed by the PIMC calculations of Kwon et al. [205].
However, no ab initio potential energy surface has been developed for He–SF6.
Recently, Kwon et al. [246] carried out calculations for Hen–phthalocyanine, a planar
conjugated macrocyclic molecule (porphyrin with four extra benzene rings attached).
Until recently, calculations of accurate interaction potentials for large polyatomic
molecules was outside the range of ab initio methods, but the SAPT(DFT) approach
[247–250] developed in the past few years can treat such systems (a dimer with 42 atoms
has recently been investigated [251]).

4.1.7. Large clusters vs. nanodroplets

Very recently, beam experiments were performed on Hen–molecule clusters with a con-
trolled size, containing nearly a hundred helium atoms, in this way reducing the gap
between such experiments and measurements made in the smallest helium nanodroplets
which contain somewhat less than one thousand atoms. For all of the investigated systems,
even at the largest values of n, the properties measured in Hen–molecule clusters were still
significantly different from those measured in nanodroplets [23–25,201,202,209,214,234].
These experiments have dramatically changed the previous opinion based on results of
quantum MC calculations (done before the cluster experiments started) indicated that
the rotational constants saturate at the nanodroplet values already for clusters with
less than 10 helium atoms [252]. However, as discussed extensively above, newer
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calculations agree with the cluster experiments reasonably well, although the agreement
does deteriorate somewhat for larger cluster sizes. One may note that the question of
convergence of cluster properties to properties of the bulk is an important and frequently
investigated subject in condensed matter physics.

The lack of convergence to the nanodroplet limit even for the clusters size approaching
a hundred atoms is surprising since these values correspond to several solvation shells
around the impurity. For example, the experiment of McKellar [25] has found that
even for n ¼ 80, corresponding to about four solvation shells around N2O, the value
of B measured in the Hen–N2O clusters is 25% larger than the nanodroplet value.
Apparently, the addition of further shells is still necessary to make the solvent more tightly
bound and develop a stronger ‘surface tension’ on the surface of the cavity surrounding
N2O, resulting in a smaller number of exchanges with atoms attached to the molecule.

The values of B computed or measured in the clusters show minima near the values of n
corresponding to complete shells which allow the most symmetric distribution of helium
atoms and therefore best mimic the droplet. This oscillatory behaviour related to the
buildup of consecutive solvation shells was investigated for Hen–N2O by Xu et al. [209].
Such behaviour has so far been observed for N2O, CO2, OCS, and HCCCN.
The degree of oscillations and the overall rate of convergence to the nanodroplet value
appears to be strongly dependent on the impurity molecule. For OCS [24], starting from
n ¼ 30, the values of B oscillate above the nanodroplet value and for n ¼ 30–72 are
about 5–10% larger than this value, i.e. the convergence is better than for N2O [25].
Still, the oscillations decay rather slowly for the Hen–OCS clusters and probably
many dozens more atoms are needed to get within 1% of the nanodroplet value. The
convergence appears to be much faster for light rotors, although experimental cluster
data are available only for CO [234]. The values of rotational transitions in Hen–CO
clusters converge monotonically to within 5% of the nanodroplet value at the largest
value of n ¼ 50. Theoretical predictions are in poor agreement with experiment in
the range of n ¼ 20–50 [215], probably due to the problems of the interaction potentials
discussed above. For Hen–HCN, no experimental work has been published. The DMC
calculations for this system indicate [225,244] that the convergence to the nanodroplet
limit is very fast in this case and the limit is reached with n of about 15.

Without doubt, we will see in the next few years further attempts aimed at closing the
gap between the clusters with controlled number of helium atoms and the nanodroplets.
Both theory and experiment will be pushed to larger cluster sizes. One may also hope
that experiments in nanodroplets can be performed with some control of droplet size.
If this size can be reduced to a few hundred helium atoms, most likely the value of B
from such experiments will be measurably different from that obtained in experiments
on droplets containing a few thousand atoms. At the same time, such size-controlled
experiments would allow better ‘two-sided’ extrapolations in the gap region.

4.2. Dimers

The number of molecular clusters (including some atom–molecule clusters) whose spectra
have been measured in helium nanodroplets is rather large and some of this work was
briefly described in Section 2. All such measurements up to 2001 are listed in Table 1 of
Ref. [34], and several more species have been measured since then. However, quantum
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MC calculations are much more difficult for such clusters and require, in addition to the
He–molecule potential(s), also an appropriate molecule–molecule potential. Whereas
experiments were performed on clusters as large as hexamers and heptamers (and signals
of clusters with about 15 monomers have been identified in some spectra [253]), theoretical
calculations have so far been restricted to dimers. There have been only a handful of such
calculations published, and we will briefly discuss all of them below. No experiments have
yet been performed on Hen–(molecular–cluster) complexes with a controlled n, so compar-
isons between theory and experiment can be only qualitative.

4.2.1. (HF)2

The first calculation related to experimental investigations of clusters of molecules
embedded in helium nanodroplets was the work of Sarsa et al. [254]. These authors applied
DMC methods to investigate Hen–(HF)2 with n ranging from 1 to 10. They used a SAPT
potential [186] for He–HF interactions and a very accurate (HF)2 potential first fitted to ab
initio computed interaction energies and then tuned to spectral data by Klopper et al. [66].
More extensive calculations with the same potentials were published later by Jiang et al.
[255]. Hydrogen-bonded dimers exhibit tunnelling of hydrogen atoms between symme-
try-equivalent minima, which leads to characteristic tunnelling splittings of spectral
lines. Whereas the vibrational spectra of isolated molecules or the monomer’s spectra
within clusters change little in helium nanodroplets, the much lower-frequency intermono-
mer vibrations can be expected to change appreciably, and the small tunnelling splittings
can be particularly sensitive. Indeed, Nauta and Miller [256] measured the splittings of
(HF)2 lines in nanodroplets that were reduced very significantly, to about 40% of the
value in the gas phase. Calculations of Sarsa et al. [254] have found that the majority of
the decrease takes place already for n¼ 4. The configuration of the first four helium
atoms is similar to that found for linear single molecules, i.e. these atoms form an equa-
torial ring. Later work [255] has shown that, for larger n, five atoms are included in the
ring. The ring is most rigid in the He5–(HF)2 cluster. The further helium atoms spread
along the dimer axis and their quantum exchanges with the atoms of the ring reduce
the rigidity of the ring. The presence of the ring can explain in a very simple way the reduc-
tion of the tunnelling splitting by helium atoms, as the ring is located ‘near’ the transition
path and therefore interferes with tunnelling (see, however, the discussion of the (HCl)2
case below).

Experiments have also found [256] that the rotational constant A of (HF)2, correspond-
ing to the rotation around the F–F axis, is increased in helium. This is unusual since,
as discussed above, the rotational constants tend to decrease in nanodroplets. The simplest
way to explain the increase of A is to assume that the presence of the helium atoms changes
the geometry of (HF)2. This dimer is significantly nonlinear in the gas phase, with the
acceptor monomer bent 68 degrees from the F–F axis [66]. If the dimer becomes more
linear in nanodroplets, this would explain the observed change of A. Nauta and Miller
[256] considered the increased linearity likely to happen due to the induction interaction
of (HF)2 with helium atoms: linear (HF)2 has a larger dipole moment than bent (HF)2
and this leads to larger induction interactions. The induction interactions make indeed
a fairly large contribution to the He–HF interaction energy [186]. These interactions are
fully included in the potentials used by Sarsa, Jiang, et al. [254,255], so that the postulated
increased linearity of (HF)2 should be visible in the calculations of Refs. [254,255].
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Unfortunately, the trend is just opposite: at n ¼ 20, the bending angle increases by 2.5
degrees and also the nonlinearity of the hydrogen bond increases by 1.1 degree, leading
to a slightly more nonlinear dimer than the gas-phase one (unpublished data from Ref.
[255]). Therefore, the increase of A remains unexplained at the level of two-body poten-
tials, and an important question for future work is whether three-body effects
may provide a large enough contribution to the total interaction potential to increase
the linearity of (HF)2. As discussed above, in Hen–molecule systems the three-body
effects are probably negligible at the current levels of accuracy. Such effects will be
larger, however, perhaps as large as a few percent of the two-body interaction energy,
in Hen–molecule2 complexes. This is due to the fact that the leading three-body induction
mechanism, which is exactly zero in the former case, may become sizable in the latter case.
This mechanism is as follows: the permanent multipole moments on monomer A induce
multipole moments on monomer B and the latter moments interact with the permanent
multipole moments of molecule C. Such interaction is zero for A–B–C¼HF–He–He
since helium is non-polar, but may be fairly significant for HF–He–HF.

4.2.2. (HCl)2

It was natural to extend the investigations of the Hen–(HF)2 clusters to the dimer of HCl.
However, no reliable potential surface was available for He–HCl. Therefore, to enable
such studies, a two-dimensional intermolecular potential energy surface of the He–HCl
complex has been computed [228] using the SAPT approach. The HCl molecule was
kept rigid with a bond length equal to the expectation value hri in the ground vibrational
state of the isolated HCl. In the region of the minimum, the He–HCl interaction energy
was found to be only weakly dependent on the HCl bond length, at least as compared
to the case of Ar–HF [211]. This finding can be attributed to the smaller dipole moment
of HCl relative to HF and the subsequently smaller induction energy component in the
case of HCl. The SAPT potential agrees with the semi-empirical potential of Willey et
al. [257] in finding that, atypically for rare gas–hydrogen halide complexes including the
lighter halide atoms, the global minimum is on the Cl side, with the depth of 32.8 cm�1,
rather than on the H side, where there is only a local minimum, 30.8 cm�1 deep. The order-
ing of the minima was confirmed by single-point calculations in larger basis sets and com-
plete basis set extrapolations, and also using higher levels of theory. Reference [228] has
shown that the opposite findings in calculations of Zhang and Shi [258] were due to the
lack of mid-bond functions in their basis set. Despite the closeness in depths of the two
linear minima, the existence of a relatively high barrier between them invalidates the
assumption of isotropy, a feature of some literature He–HCl potentials. The accuracy of
the SAPT potential was tested by performing calculations of rovibrational levels of He–
HCl. The transition frequencies obtained were found to be in excellent agreement (to
within 0.02 cm�1) with the measurements of Lovejoy and Nesbitt [259]. The SAPT poten-
tial predicts a dissociation energy of 7.74 cm�1, which is probably more accurate than the
experimental value of 10:1� 1:2 cm�1 [259]. The analysis of the ground-state rovibrational
wavefunction shows that the He–HCl configuration is favoured over the He–ClH config-
uration despite the ordering of minima. This is due to the greater volume of the well in the
former case.

The potential of Ref. [228], together with the empirical HCl dimer potential fitted to
spectroscopic data in Ref. [260], was used by Jiang et al. [255] to investigate Hen–(HCl)2
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clusters by performing DMC calculations. The gas-phase tunnelling splitting in (HCl)2
amounts to 15.5 cm�1 [261] and is more than 20 times larger than that in (HF)2. In fact,
the tunnelling splitting in (HCl)2 is comparable to the energy of the rotational excitation
of free HCl. Thus, one would expect only a very small effect of the helium environment on
the splitting, similarly as in the case of most large rotational constants. The DMC calcula-
tions of Ref. [255] were first performed for n¼ 0 and predicted a splitting of 14.9 cm�1,
in reasonably good agreement with experiment. This splitting was practically unchanged
in clusters with n ranging from 1 to 14: the deviation was not larger than 0.2 cm�1.
Thus, the effects of the helium environment were found even smaller than anticipated.
At the same time, the Hen–(HCl)2 clusters exhibit the distribution of helium atoms
around the dimer similar as in the case of (HF)2, except that the ring becomes saturated
with six helium atoms rather than with five. The smallness of the reduction is apparently
due to the tunnelling being so fast in the case of (HCl)2 that there is no adiabatic following
of this motion by helium atoms. This dynamic effect is probably the main reason for
the differences in the behaviour of the tunnelling splittings between Hen–(HCl)2 and
Hen–(HF)2 complexes. However, there are also several small static effects which taken
individually are not likely to explain the observations, but acting together in the same
direction may have an impact. First, Jiang et al. [255] have found that the ring is about
0.5 bohr larger in the case of Hen–(HCl)2 than Hen–(HF)2, so that the helium atoms are
slightly further from the tunnelling path in the former case. This is partly balanced by
the larger size of the HCl monomer, but still the minimum distance on the tunnelling
path between the hydrogen of HX and a helium atom from the ring is about 0.3 bohr
larger for HCl. Second, although the ring is similar in both cases, the helium atoms
of the ring are about 30% less strongly bound for HCl than for HF. More weakly
bound atoms result in less resistance to the tunnelling motions. The third reason is that
(HCl)2 is more nonlinear than (HF)2. In consequence, the tunnelling path is shorter in
the former case (80 degrees vs. 102 degrees), and therefore chances for interferences
with helium atoms are smaller.

Very surprisingly, two recent experiments on (HCl)2 in helium nanodroplets found
a substantial reduction of the tunnelling splitting: to 28% [262] and 55% [263] of the
gas phase value. One should note that both results are indirect. In particular, the authors
of Ref. [263] estimated this splitting from the value measured for the excited vibrational
state of HCl. Although the experimental findings differ from each other quite substan-
tially, both measurements indicate that there is a much stronger reduction of the splitting
in the droplets than in small Hen–(HCl)2 clusters [255]. One possibility for this difference is
a coupling of this transition to collective excitations of helium. Couplings of the rovibra-
tional motions of impurity molecules to collective motions of superfluid helium have been
the subject of several recent investigations [30,264,265].

4.2.3. Clusters containing H2

Molecular clusters most often investigated in helium solvent were those that include the
hydrogen molecule(s). This is due to the possibility of the existence of superfluidity in para-
hydrogen complexes [7,60], see the discussion in Section 2. Since the chromophore mole-
cule used in these experiments so far was OCS, Kwon and Whaley [266] investigated the
OCS–H2–He63 cluster using the PIMC method and the OCS–H2 and OCS–He ab initio
potentials of Refs. [267] and [222], respectively. However, the He–H2 interactions
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were accounted for only in a very approximate way, as described by an empirical one-
dimensional potential of Ref. [268]. Nevertheless, the rotational constant of OCS–H2

agreed well with those measured by Grebenev et al. [269]. The more recent DMC calcula-
tions of Paesani and Whaley [270] were performed for Hen–(H2)m–OCS clusters with m
up to 17 and the number of helium atoms up to n ¼ 128�m. These authors calculated
the shifts of the fundamental vibrational frequency of OCS upon complexification, the
quantity measured in Ref. [7]. Ab initio He–OCS [219] and H2–OCS [270] potentials
with explicit dependence on the asymmetric stretch in the OCS molecule have been used.
The He–H2 potential was again taken from Ref. [268]. The H2–H2 interactions were
approximated by the spherical component only of an empirical potential [271]. Despite
the use of such approximate potentials, the agreement of the vibrational shifts with the mea-
sured values [7] was very good. Apparently, the investigated phenomenon depends mainly
on the OCS–H2 interaction potential. Indeed, due to stronger interactions of OCSmolecules
with hydrogen molecules than with helium atoms, all the hydrogen molecules in clusters of
the sizes considered are in a direct contact with OCS. An analogous system which could be
investigated in helium nanodroplets is CO–(H2)n. For CO–H2, very accurate potential
energy surfaces have been available [272,273]. The spectra of CO–(H2)n clusters have
recently been measured [274] and DMC calculations performed [274]. Similarly as in the
clusters with helium [232], the spectra of CO in hydrogen are significantly more complicated
than those of longer linear molecules. Also HF–(H2)n complexes have been investigated in
helium nanodroplets [275–277]. DMC calculations have been performed for HF–(H2)n clus-
ters by Bacic et al. [278,279].

4.2.4. Dimers of HCCCN and HCN

Recently, Paesani et al. [280] published a paper presenting a joint experimental and theo-
retical investigation of the HCCCN complex with HCN in helium environment. According
to ab initio calculations of Ref. [280], there are two minima on the dimer surface: the
HCN–HCCCN configuration (where the HCCCN monomer is the hydrogen donor in
the bond) and the HCCCN–HCN one (with roles reversed). The former dimer exhibited
typical spectra of linear molecules that have T-shaped minima in the interaction potentials
with helium. Spectra of such systems in helium nanodroplets, despite the existence of an
equatorial helium ring around the molecule, do not include the Q branches, as discussed
above. However, a Q branch was observed by Paesani et al. [280] in the spectrum that
has been identified as due to the HCCCN–HCN dimer. This might indicate that this com-
plex is nonlinear in helium nanodroplets. However, the geometry optimizations for the
dimer performed by Duberly et al. [281] at the MBPT2 level in an augmented double-
zeta quality basis set found only minima at linear configurations (actually, the HCN–
HCCCN minimum was somewhat nonlinear, see Figure 1 in Ref. [281]). Since the poten-
tial was found to be strongly anisotropic in angular coordinates, the authors of Ref. [280]
concluded that both dimers remain in linear configurations in helium nanodroplets.
Assuming the dimers as rigid molecules in the two linear configurations, Paesani et al.
[280] computed in each case the dimer–He potentials at the same level of theory as in
Ref. [281] and used these potentials in PIMC calculations with up to 200 helium atoms.
They found that the non-superfluid densities of helium were quite different in the two
cases (notice that the captions of Figs. 10 and 11 in Ref. [280] should say ‘non-superfluid’
rather than ‘superfluid’ density [282]). In particular, a large non-superfluid density was
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found around the HC end of the HCCCN–HCN dimer, i.e. a number of helium atoms stuck
to this end of the dimer. Paesani et al. [280] attributed the appearance of theQ branch to this
density.

The Q branches were observed earlier for (HCN)n, n ¼ 3, 4, clusters in helium
nanodroplets [283]. The PIMC calculations have reproduced the observations very well.
The physical interpretations of the PIMC results was that the Q branches correspond
to unique thermal excitations in the first solvation layer.

4.3. Trimers and larger clusters

As discussed in Section 2, several clusters larger than dimers have been observed in helium
nanodroplets. No quantum MC calculations have been performed so far for such clusters
with the exception of the already discussed clusters involving the hydrogen molecules
which, however, play more of the role of a solvent. There are several systems for which
there exist potentials enabling such calculations; one example are the Arn–HF
clusters observed in helium nanodroplets [185]. Several accurate Ar–HF [211,284,285]
and Ar–Ar [125] potentials have been published. Even the three-body potentials, very
relevant for systems of this type, are available for Ar3 [168,169,286] and for Ar2–HF
[213,287,288].

Although calculations of nuclear dynamics for clusters containing more than a pair
of molecules have not yet been performed, electronic structure calculations have
been used to interpret experiments on such systems. This was mainly done by comparing
minimum geometries of various complexes and by calculations the harmonic vibrational
transition frequencies. For example, Burnham et al. [289] used several empirical and
ab initio water potentials as well as the MBPT2 method to investigate the energetics
of small cyclic water clusters, such as detected in the experiment of Ref. [46]. The main
question to be answered was the placement of the water molecule added to a ring of n
water molecules. One might expect to find this monomer attached to the existing n-mer
ring. However, all the clusters observed are cyclic, suggesting that the barriers for insertion
of one extra water molecule into the ring are very small. Indeed, small barriers have been
found for such processes in theoretical studies of Ref. [289]. This analysis could now
be made more precise using the recent very accurate potential for water [290]. In contrast
to the water clusters, after the cyclic (HF)4 is formed in helium nanodroplets, the
fifth monomer does attach to the ring [291]. This finding was also supported by an
ab initio analysis [291].

4.4. Metallic clusters

As mentioned earlier, metal clusters are among systems most often investigated by
helium-nanodroplet spectroscopy and it is important to know in the experiments whether
such clusters reside on the surface or inside a droplet [36,68,77–88]. This behaviour
depends on the strength of the He–metal interaction relative to the He–He interaction.
As discussed above, the later value is now known very accurately and amounts
to 7.6495 cm�1 [112]. Accurate calculations have been recently performed for He–Mg
interactions [231] using the CCSD(T) method with all electrons correlated and the FCI
method with frozen core. Large basis sets were used and the results were extrapolated
to CBS limits. The final estimate [231] of the interaction energy at 5.0 Å was
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�5:11� 0.11 cm�1 including the relativistic correction of �0:01 cm�1 computed at the
CCSD(T) level using the Douglas–Kroll Hamiltonian [292]. This result agrees very well
with earlier work by Hinde [293] who obtained an interaction energy of
�4:97� 0.06 cm�1 at the same distance. The actual value of the minimum separation is
5.1 Å and therefore the De of the He–Mg potential is �5:14 cm�1 (obtained by scaling
of the value from Ref. [293]). This slightly deeper potential well [231] reinforces the ana-
lysis of Hinde [293] indicating that Mg should indeed dissolve in the helium droplets, as
found experimentally [86]. As discussed earlier, alkaline earth metals may provide an
important probe of 3He–4He mixtures [91].

5. Summary

The method of high-resolution spectroscopic measurements in helium nanodroplets
developed about 15 years ago has led to significant discoveries in physics and chemistry.
This method enabled studies of superfluid helium with unprecedented precision, yielding
insights into superfluidity at the nanoscale level. It also made possible investigations
of reactive and fragile molecules that could not be examined in other ways.

The better understanding of superfluidity on microscopic scale was made possible due
to synergistic coupling of high-resolution spectroscopic measurements with high-accuracy
quantum calculations on helium clusters containing impurities. Calculations
for pure helium, both clusters and bulk, predate the helium-nanodroplet developments.
To interpret the results of calculations in terms of bulk phenomena such as superfluidity
and in terms of quantum ideal gas concepts such as Bose–Einstein condensation,
some definitions had to be assumed on the microscopic level and the validity of these
assumptions was subject of debate. The same DMC and PIMC simulation techniques
have been applied in recent years to helium nanodroplets containing impurities.
The good agreement of the predictions from these calculations with high-resolution spec-
troscopic measurements in helium nanodroplets, both in quantitative and interpretative
sense, has greatly increased our confidence in the microscopic description of low-tempera-
ture helium resulting from computer simulations. In particular, one can now assume that
the questions of the microscopic origins of the behaviour of superfluid helium is resolved.
The London–Landau controversy regarding the role of Bose–Einstein condensation is
settled with both points of view being partially right, with Landau’s opinion closer to
the truth as even at T¼ 0K less than 10% of helium is in the form of the condensate,
whereas it is 100% superfluid [176]. More recent calculations predict an even lower
condensate fraction, for example 6.9� 0.5% in Ref. [177] and about 8% in Ref. [179].

The spectra of small molecules embedded in helium clusters can be quantitatively
predicted by quantum calculations using methods such as DMC or PIMC, provided
that high-accuracy helium–molecule potentials are available. The calculations can be
made for clusters which are large enough to give spectra that are fairly close to those
observed in the droplets. Thus, theory may be used to predict results of measurements
in the nanodroplets prior to experiments, and in fact several such calculations have
been published, as discussed above. However, the most important experiments from the
theoretical viewpoint are the very recent ones on doped helium clusters of controllable
size. These experiments enable the most precise comparisons of theory with experiment
since such comparisons can be made on identical systems. As the number of
helium atoms in the most recent such experiments approached one hundred, the gap
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between clusters and nanodroplets may soon be closed. This would be very important not

only for understanding superfluidity, but also for understanding the crossover from clus-

ters to condensed phase.
This review has stressed that ultimately the intermolecular interaction potentials decide

about the properties of molecules embedded in helium nanodroplets. A good illustration

of this fact is that the reductions of the rotational constants due to the droplet environ-

ment depend rather critically on the potentials, as discussed here. Furthermore,
results of quantumMC calculations depend significantly on the accuracy of intermolecular

potentials. Several literature examples have been given showing that inaccurate potentials

can lead to qualitatively wrong predictions. Fortunately, with recent developments in com-

puter software and hardware, it is now possible to compute near spectroscopic accuracy
potentials for systems as large as the water dimer [290,294,295], and reasonably accurate

ones for dimers containing about fifty atoms [251]. In fact, for most of the molecules inves-

tigated in helium clusters with controlled size and in helium nanodroplets, the two-body
potentials accurate to about one percent or better can be obtained fairly routinely.

The errors due to uncertainties of such potentials are currently smaller than the typical dis-

crepancies between quantum MC calculations and experiments. As analysed here, in some

cases, in order to further improve the accuracy of theoretical predictions, one will have to
consider three-body contributions to interaction potentials. These contributions are

much more difficult to compute than two-body ones and pose an important challenge

for electronic structure theory. On the other hand, some of the current discrepancies
between results of quantum MC calculations and experimental data may also be due to

inaccuracies introduced by approximations made in the treatment of the excited rotational

states.
In calculations for impurity–Hen clusters, one also needs a He–He potential.

Surprisingly, many recently published quantum MC calculations on such clusters or on
bulk helium still use older empirical potentials (see also a discussion of the potentials

used in a recent review by Barranco et al. [41]) such as that of Aziz et al. [155,156], whereas

in the thermodynamics community it has been recognized since the mid-1990s that ab initio
potentials had become more accurate, see, e.g. the papers by Aziz et al. [154,296].

One often used ab initio potential for helium was developed by Korona et al. [102]

about a decade ago. Very recently a similar but much more accurate potential was

published by Jeziorska et al. [112]. The use of the latter potential, together with the
three-body non-additive potential of Ref. [146], may remove some existing discrepancies

between theory and experiment for bulk helium.
Superfluid helium nanodroplets made it possible to form and spectroscopically probe

a wide range of species that could not be investigated by any other techniques.
These species include atomic and molecular clusters in unusual conformations and

states, radicals, and complexes formed in prereactive channels of chemical processes.

The new technique allowed also measurements of spectra of several compounds – includ-

ing biomolecules, semiconductor clusters, and salts – which could not be measured in gas
phase or could only be measured with a much lower precision. In addition, the low tem-

perature of the nanodroplets results in considerable simplifications of the spectra of large

molecules and therefore one may expect a significant role of these techniques in investiga-
tions of biomolecules. One may also expect many important discoveries concerning the

creation of novel species, in particular of exotic nanostructures with atoms of various
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types layered in some prescribed fashion. The very low temperature of the droplets leads
to a significant slowdown of chemical processes and therefore one may anticipate
important studies of chemical dynamics using various types of pump-probe time-resolved
experiments.
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